59. Synthesis of Unsubstituted and 4,4'-Substituted Oligobipyridines as Ligand Strands for Helicate Self-Assembly

by Margaret M. Harding¹), Ulrich Koert²), Jean-Marie Lehn*, Annie Marquis-Rigault, Claude Piguet³), and Jay Siegel⁴)

Laboratoire de Chimie Supramoléculaire, Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F–67000 Strasbourg⁵)

(4.III.91)

A general strategy for the synthesis of oligobipyridine ligands 2-5 containing from two to five 2,2'-bipyridine subunits, for helical metal complexes is described (see *Scheme*). Both the unsubstituted parent strands (a series) as well as their derivatives bearing ester or amide functions in the 4,4'-positions of the bipyridine moieties (**b**-**d** series) have been obtained.

1. Introduction. – Self-organisation consists of the spontaneous generation of well-defined supramolecular architectures by self-assembly from their components in a given set of conditions. The design of systems undergoing self-organisation represents a major goal of supramolecular chemistry [1]. We have pursued several approaches involving either metal-ion complexation or molecular recognition between complementary units as binding interactions [1]. In particular, self-organisation may occur in chain ligands containing several identical subunits, if successive binding of a given substrate to the different sites gives rise to a well-defined final structure.

This has been shown to occur in the case of the spontaneous formation of double helical metal complexes, the helicates, in which two oligobipyridine strands are wrapped helically around Cu^{t} or Ag^{t} metal cations which hold them together. Di- to pentahelicate complexes, in which two to five ions are bound, have thus been obtained [2–5].

To this end, oligobipyridine ligands containing two to five 2,2'-bipyridine (bpy) units have been synthesised. Furthermore, in order to allow the attachment of various residues to the oligobipyridine ligands and to the helicates, it becomes necessary to introduce functional groups onto the bpy units. This has been realised in the deoxyribonucleohelicates DNH which represent positively charged, inside-out analogues of the nucleic-acid double helix [5].

¹) Present address: Department of Organic Chemistry, University of Sydney, Broadway, N.S.W. 2006, Australia.

²) Present address: Fachbereich Chemie, Phillips Universität, Hans-Meerwein-Strasse, Lahnberge, D-3550 Marburg.

³) Present address: Laboratoire de Chimie Minérale, Université de Genève, CH-1211 Genève 4.

⁴) Present address: Chemistry Department, University of California, San Diego, USA.

⁵) URA 422 of the CNRS.

The key to the study of the helicate self-organisation processes and to the design of substituted derivatives bearing functionally active (redox active, photoactive, *etc.*) units, is the synthesis of the basic oligobipyridine strands. We describe here in detail the synthetic procedures towards the parent unsubstituted strands as well as the strands containing a 4,4'-disubstitution pattern on the bpy components.

2. Target Molecules and Synthetic Strategy. – The 6,6'-oxybis(methylene)-linked oligobipyridines 2–5 containing two, three, four, and five 2,2'-bipyridine units were chosen as target molecules. The unsubstituted substances 2a, 3a, 4a, and 5a form the parent species. Inspection of molecular models based on the X-ray structure of the unsubstituted trimer helicate $[Cu_3(3a)_2](TfO)_3$ (TfO = $CF_3SO_3^-$) [2] showed that functional groups in the 4,4'-position of the bipyridines should be well suited for attaching various molecular fragments to the helicate structure and to organise them in a double-helical

fashion. To this end, carboxy groups have now been introduced to give substituted strands bearing either ester or amide functions: **2b**, **3b**, **4b**, and **5b** and **2c**, **3c**, **4c**, and **5c**. Because of potential steric interactions between substituents that could occur on helicate formation, the trimeric and pentameric strands **3d** and **5d** containing alternatively substituted and unsubstituted bpy groups were also synthesised.

The general strategy followed was based on sequential *Williamson* condensations between functionalised components according to the schematic representation shown in the *Scheme*. As seen, the overall layout was convergent and the condensations involving a difunctional reagent made use of the (dibromide + 2 monoalcohol) rather than the (dialcohol + 2 monobromide) reaction. This choice was made in order to avoid having to generate a dialcoholate for the condensations.

Scheme. Schematic Representation of the Williamson Condensations Leading to the Oligobipyridine Strands 2–5 Containing 2, 3, 4, and 5 Bipyridine Units. Dimer 16 was obtained by condensing monomer dibromide 15 with monomer monoalcohol 12, and dimer monoalcohol 17 was obtained by substituting the Br-atom in 16 by OH.

Extension of this scheme using, *e.g.*, difunctional dimeric components would allow the synthesis of the hexameric analogue and longer ones if desired, for exploring further the ion-binding features of oligomeric bipyridine strands. Furthermore, by using differently substituted bpy units or even different types of bi[heterocyclic (or other) units], mixed oligo(bpy) ligands may be synthesised. Of course, other reactions may be used for connecting the bpy groups, thus leading to different linkages between the subunits⁶).

3. Procedures and Results. 3.1. Functionalised Mono- and Bis[bipyridines]. The substituted dimethylbipyridines 1b-d were synthesised from the known diester 6 [8]. Thus, transesterification of dimethyl ester 6 with LiO(t-Bu) in t-BuOH/toluene [9] yielded di(*tert*-butyl)ester 1b in 90% yield. Reaction of 6 with $Et_2NH/AlCl_3$ gave dicarboxamide 1c in 96% yield, and reduction of 6 with $LiAlH_4$ afforded diol 7a in 95% yield. Swern

⁶) This has been done using, e.g., Wittig condensation [6] or oxidative coupling [7] reactions.

oxidation [10] (83%) and *Wittig* reaction (80%) yielded diacrylate 7c, and hydrogenation with Pd/C gave the dipropionate 1d.

The dimethylbipyridines were functionalised by radical bromination as previously described [8] (1a) or by the *N*-oxide route [11] (1a-d). Thus, on treatment with 3-chloroperbenzoic acid (3-ClC₆H₄CO₃H), 1b-d yielded mixtures of *N*-oxide 8b-d and *N*,*N'*-dioxides 9b-d from which monoalcohols 12b-d and dialcohols 13b-d, respectively, were obtained [12] (*via* 10b-d and 11b-d, resp., which were not all characterised).

The monobromides 14b, c and dibromides 5b-d were readily available from the corresponding monoalcohols 12b, c and dialcohols 13b-d via mesylation followed by treatment with LiBr in THF.

Compounds 1a [13], 12a [14], 13a [14], 14a [14], and 15a [8] were prepared according to literature procedures and the bis[bipyridines] 16a-d and 17a-c by condensation of the

appropriate functionalised bipyridines 12 and 15 (\rightarrow 16) and substitution (\rightarrow 17; see *Scheme*).

3.2. Unsubstituted Oligobipyridines. Monoalcohol 12a (2 equiv.) and dibromide 15a were reacted in the presence of either BuLi [2] or KO(t-Bu) to afford trimer 3a. The synthesis of tetramer 4a and pentamer 5a followed the procedure, which has already been reported in preliminary form [3].

3.3. Ester-Substituted Oligobipyridines. As functional groups to be introduced on the bpy units, the *t*-Bu ester group was chosen for several reasons: *i*) an ester functionality allows a wide variety of chemical modifications to attach different substituents; *ii*) it should be stable under the basic conditions used during the formation of the ether linkages between the bipyridines; *iii*) it should increase the solubility properties of the oligobipyridines, a crucial feature for the physico-chemical studies of ion complexation and of the self-assembly process.

Various conditions were tested for the *Williamson* ether-formation step. NaH, BuLi, or LDA (lithium diisopropylamide) were not suitable. Best results were obtained using KO(t-Bu) in t-BuOH/CH₂Cl₂. Reaction of monoalcohol **12b** (2 equiv.) with dibromide **15b** (1 equiv.) gave trimer **3b** in 49% yield (reaction of **12b** with **15b** in 1:1 proportion gave the dimer monobromide **16b**, see above and *Scheme*). Condensation of **16b** with **17b** and of 2 equiv. of **17b** with **15b** gave access to tetramer **4b** and pentamer **5b**, respectively. The yields of tetramer **4b** (42%) and pentamer **5b** (21%) were low compared to the unsubstituted series (trimer **3a**, 80%; tetramer **4a**, 68%; pentamer **5a**, 72%). This may be due to side reactions of the ester function attached to the activating pyridine ring. For this reason, the syntheses were repeated with components bearing amide groups, which should be more stable than esters.

3.4. Amide-Substituted Oligobipyridines. Assembling of the monomer building units to dimer, trimer, tetramer, and pentamer were readily accomplished following the same

general procedure as for the esters. The yields for the critical ether-linkage step (using NaH/THF in all four cases) were now much higher than in the ester series: 72% of dimer **2c**, 76% of trimer **3c**, 56% of tetramer **4c**, and 74% of pentamer **5c**.

3.5. Elongated Ester-Substituted Oligobipyridines. Various observations had indicated that fully substituted oligobipyridine strands bearing bulky groups might make helicate formation sterically difficult. In addition, electron-withdrawing functions such as esters in position 4,4' also seemed to be detrimental by decreasing the Cu¹-complexation ability required for helicate formation. This was found to be especially problematic in the perspective of attaching nucleoside fragments for the synthesis of the deoxyribonucleohelicates DNH [5]. To overcome these problems, a CH_2CH_2 spacer was introduced between the bpy nucleus and the carboxylic group so as to decouple it from the bpy ligand. In addition, in the elongated series, the bulky substituents are placed farther away from the helical axis, thus diminishing steric interactions between them. Further decrease of steric interference was achieved by alternation: substituents were placed in an alternating manner on every second bipyridine unit only. In this perspective, the elongated trimer **3e** (50%) as well as the elongated-alternated trimer **3d** (61%) and pentamer **5d** (47%) were synthesised according to the Scheme.

4. Conclusion and Outlook. – The oligobipyridine molecules reported here represent ligand strands for the spontaneous formation of double-helical metal complexes of helicate type by complexation of metal cations of tetrahedral coordination geometry such as Cu¹ and Ag¹ [2–5]. The introduction of functional groups on the bpy units offers the possibility to attach a variety of substituents to the ligand backbone. Helicate formation then provides a means of arranging these groups in space in a unique double-helical fashion which may result in novel spectroscopic, electronic, photochemical, *etc.*, properties. These ligands are of interest for the study of general molecular and supramolecular features (self-organisation, cooperativity, helicity, *etc.*), for the inorganic chemistry of linear polymetallic complexes, and for the design of analogues of biological species. Numerous developments may be envisaged, and studies along these lines are under way.

We thank the Collège de France (M. M. H.), the Fonds der Chemischen Industrie (Liebig grant, U.K.), the Swiss National Science Foundation (C.P.), and the CNRS-NSF exchange programme (J.S.) for post-doctoral fellow-ships. M. M. H. acknowledges the University of Sydney for an Eleanor Sophie Wood travelling fellowship. We thank Catherine Nguyen for her help in the preparation of some intermediates.

Experimental Part

1. General. All commercially available chemicals employed were reagent grade and used without further purification, unless stated otherwise. THF and toluene were distilled over Na/benzophenone, CHCl₃ and CH₂Cl₂ filtered over basic aluminium oxide (act. I, *Merck*). All reactions were carried out under N₂. Magnetic stirring was used if not stated otherwise. Starting materials: 6,6'-dimethyl-2,2'-bipyridine (1a) was obtained from 6-bromo-2-methylpyridine [13], 6-(hydroxymethyl)-6'-methyl-2,2'-bipyridine (12a), 6,6'-bis(hydroxymethyl)-2,2'-bipyridine (13a), and 6-(bromomethyl)-6'-methyl-2,2'-bipyridine (14a) according to [14], and dimethyl 2,2'-bipyridine (13a), and 6-(bromomethyl)-6'-methyl-2,2'-bipyridine (15a) according to [8]. M.p.: *Thomas-Hoover* apparatus, model Dr. *Tottoli*; digital melting-point apparatus (*Electrothermal*); no corrections. TLC: precoated plastic sheets *Polygram Sil G/UV*₂₅₄ and *Polygram Alox N/UV*₂₅₄ (*Macherey-Nagel*). Prep. TLC: silica gel (*Merck 60 PF*₂₅₄, cotaining gypsum); aluminium oxide (Al₂O₃; *Merck 60 PF*₂₅₄, type *E*). Prep. column chromatography (CC): silica gel (*Merck 60*, 0.040–0.063 mm). UV: *Cary 219*, λ_{max} (ɛ). FT-IR (cm⁻¹): Bruker IFS66.

¹H-NMR: *Bruker AC 200, Bruker AM 400*; chemical shifts in ppm rel. to TMS (= 0 ppm) as internal standard. ¹³C-NMR: broad-band decoupled. MS: FAB (positive mode) were performed at the Laboratoire de Spectrométrie de Masse, Strasbourg, and at the University of Manchester. The microanalyses were done at the Service Central de Microanalyse du CNRS, Institut de Chimie, Strasbourg.

2. Unsubstituted Oligobipyridines (a Series). 6', 6'''-Dimethyl-6.6''-[oxybis(methylene)]bis[2,2'-bipyridine] (2a). To a stirred soln. of 12a (400 mg, 2.00 mmol) in THF (50 ml), NaH (96 mg, 2.20 mmol) was added. After 30 min at r.t., 14a (526 mg, 2.00 mmol) was added and the mixture heated to reflux for 12 h. The solvent was evaporated, the residue refluxed in MeOH (50 ml) for 1 h, and the remaining solid filtered off, dissolved in a small amount of CHCl₃, and purified by FC (silica gel, CH₂Cl₂): 458 mg (60%) of 2a. White solid. M.p. 188–189°. TLC (Al₂O₃, CHCl₃): R_{f} 0.50. FT-IR (KBr): 3056w (C=CH); 2872w (sat. CH); 1578s (C=C); 1445s, 1146s (C-O); 780s, 632m. ¹H-NMR (200 MHz, CDCl₃): 2.65 (s, 2 CH₃); 4.91 (s, CH₂OCH₂); 7.17 (d, J = 7.5, 2 H, H-C(5',5''')); 7.58 (d, J = 7.5, 2 H, H-C(5,5'')); 7.70 (t, J = 7.5, 2 H, H-C(4',4''')); 7.85 (t, J = 7.5, 2 H, H-C(4,4'')); 8.19 (d, J = 7.5, 2 H, H-C(4,4'')); 8.30 (d, J = 7.5, 7 H, H-S7, N 14.30; found: C 73.68, H 6.02, N 14.12.

6,6"-[(2,2'-Bipyridine-6,6'-diyl)bis(methyleneoxymethylene)]-6',6""-dimethylbis[2,2'-bipyridine] (3a). To a stirred soln. of 12a (300 mg, 1.50 mmol) in THF (100 ml) at -60° were added dropwise with a syringe 1.10 ml of 1.5M BuLi in hexane. The colour of the soln. turned from light yellow to violet at the end of the addition. The mixture was allowed to warm to r.t., treated with 15a (175 mg, 0.50 mmol), and stirred for 18 h during which time a white precipitate formed. Then, the solvent was evaporated and the remaining solid transferred to a fritted filter funnel and washed with MeOH followed by Et₂O. The product was dissolved in CHCl₃ (700 ml), and after addition of MeCN (700 ml), it crystallised upon cooling to give 247 mg (80%) of 3a. White solid. M.p. 227–229°. TLC (Al₂O₃, CHCl₃): R_{f} 0.35. FT-1R (KBr): 3059w (C=CH); 2872w (sat. CH); 1578, 1572s (C=C); 1438s, 1143s (C=O); 780s, 633m. ¹H-NMR (200 MHz, CDCl₃): 2.65 (s. 2 CH₃); 4.91 (s. 2 CH₂OCH₂); 7.17 (d, J = 7.5, 2 H, H-C(5',5''')); 7.70 (t, J = 7.5, 2 H, H-C(4',4''')); 7.85 (t, J = 7.5, 4 H, H-C(5',5''')); 8.19 (d, J = 7.5, 2 H, H-C(3',3''')); 8.33 (d, J = 7.5, 4 H, H-C(3,3''), H-C(3^{1V},3^V)). Anal. calc. for C₃₆H₃₂N₆O · 2 H₂O (616.69): C 70.05, H 5.84, N 13.62; found: C 70.44, H 5.44, N 13.45.

 $6' - (Bromomethyl) - 6''' - methyl - 6,6'' - [oxybis(methylene)]bis[2,2'-bipyridine] (16a). To a stirred soln. of 12a (1.18 g, 5.91 mmol) in THF (75 ml), NaH dispersion (260 mg, 5.91 mmol) was added. After 1 h at r.t., 15a (2.43 g, 7.10 mmol) was added. The soln. was refluxed for 3 h. Evaporation of the solvent and FC (silica gel, CH₂Cl₂/MeOH 99 :1) afforded 1.20 g (45%) of 16a. White solid. M.p. 142–144°. TLC (Al₂O₃, CH₂Cl₂): <math>R_{f}$ 0.80. IR (KBr): 3060w (C=CH); 2870w (sat. CH); 1580s–1560s (C=C); 1430s; 1140s; 770s; 630s. ¹H-NMR (200 MHz, CDCl₃): 2.65 (s, CH₃-C(6''')); 4.63 (s, CH₂Br); 4.91 (s, CH₂OCH₂); 7.17 (d, J = 7.5, 1 H); 7.47 (d, J = 7.5, 1 H); 7.58 (d, J = 7.5, 2 H); 7.70 (t, J = 7.5, 1 H); 7.80 (t, J = 7.5, 1 H); 7.87 (t, J = 7.5, 2 H); 8.19 (d, 1 H); 8.30–8.36 (m, 3 H). Anal. calc. for C₂₄H₂₁BrN₄O·H₂O (479.30): C 60.12, H 4.83, N 11.68; found: C 60.70, H 4.46, N 11.13.

 $6'-(Hydroxymethyl)-6'''-methyl-6,6''-foxybis(methylene)]bis[2,2'-bipyridine]^7)$ (17a). A stirred soln. of 16a (500 mg, 1.08 mmol) in DMF (50 ml) was treated with NaOAc (850 mg, 10.4 mmol) at 130° for 10 h. The soln. was concentrated *in vacuo*, H₂O was added, and the precipitated bipyridine methyl acetate (429 mg) separated by filtration. The acetate was dissolved in MeOH (50 ml), a soln. of NaOH (200 mg, 5.00 mmol) in H₂O (1.5 ml) added, and the mixture refluxed for 30 min. Upon cooling to r.t., the product crystallised. Filtration and recrystallisation from EtOH gave 264 mg (62%) of **17a**. White solid. M.p. 178° (EtOH). TLC (Al₂O₃, CH₂Cl₂/MeOH 98 :2): $R_f 0.40$ ¹H-NMR (200 MHz, CDCl₃): 2.65 (*s*, CH₃-C(6''')); 4.83 (*s*, CH₂OH); 4.91 (*s*, CH₂OCH₂); 7.17 (*d*, *J* = 7.5, 1 H); 7.27 (*d*, *J* = 7.5, 1 H); 7.58 (*d*, *J* = 7.5, 1 H); 7.61 (*d*, *J* = 7.5, 1 H); 7.72 (*t*, *J* = 7.5, 1 H); 8.24–8.28 (*m*, 3 H). Anal. calc. for C₂₄H₂₂N₄O₂ (398.45): C 72.34, H 5.56; found: C 71.82, H 5.47.

6',6'''-Dimethyl-6,6''- {[oxybis(methylene)]bis(2,2'-bipyridine-6',6-diyl)bis(methyleneoxymethylene)}bis[2,2'-bipyridine] (**4a**). To a stirred soln. of **17a** (100 mg, 0.25 mmol) in THF (30 ml) and DMSO (0.5 ml), KO(t-Bu) (36.5 mg, 0.32 mmol) was added. After 30 min at r.t., **16a** (116 mg, 0.25 mmol) was added and the mixture refluxed for 1 h. It was cooled to r.t., and after 48 h, a precipitate had formed which was filtered off, washed with H₂O and Et₂O, and dried thoroughly: 134 mg (68%) of **4a**. M.p. > 260°. ¹H-NMR (400 MHz, CF₃COOD/(D₆)acetone 1:9): 3.12 (*s*, 2 CH₃); 5.19, 5.36, 5.38 (3*s*, 3 CH₂OCH₂); 8.23–8.89 (*m*, 24 H). FAB-MS (pos. mode): 779.2 ([*M* + H]⁺, C₄₈H₄₃N₈O₃, cale. 778.9). Anal. cale. for C₄₈H₄₂N₈O₃ (778.9): C 74.01, H 5.43; found: C 73.20, H 5.26.

⁷) Systematic name of **17a**: 6^{*m*}-Methyl-6^{*i*},6^{*m*}-[oxybis(methylene)]bis[2,2^{*i*}-bipyridine]-6-methanol.

6,6"- [(2,2'-Bipyridine-6,6'-diyl)bis(methyleneoxymethylene)bis(2,2'-bipyridine-6',6-diyl)bis(methyleneoxymethylene)]-6',6"'-dimethylbis[2,2'-bipyridine] (**5a**). To a stirred soln. of **17a** (200 mg, 0.50 mmol) in THF (30 ml) and DMSO (0.5 ml), KO(t-Bu) (70 mg, 0.62 mmol) was added. After 30 min at r.t., **15a** (116 mg, 0.25 mmol) was added and the mixture refluxed for 15 h, during which time a precipitate formed. After addition of MeOH (1.0 ml), the precipitate was filtered off, washed with MeOH/H₂O 1:1 and Et₂O, and dried: 175 mg (72%) of **5a**. M.p. > 260°. ¹H-NMR (400 MHz, CF₃COOD/(D₆)acetone 1:9): 3.12 (s, 2 CH₃); 5.19, 5.36, 5.38 (3s, 4 CH₂OCH₂); 8.23–8.89 (m, 30 H). FAB-MS (pos. mode): 977.0 ([M + H]⁺, calc. 977.1). Anal. calc. for C₆₀H₅₂N₁₀O₄· 3H₂O (1031.14): C 69.88, H 5.67, N 13.58; found: C 69.74, H 5.20, N 12.97.

3. *Ester-Substituted Oligobipyridines* (**b** Series). *Di(* tert-*butyl*) 6,6'-*Dimethyl*-2,2'-*bipyridine*-4,4'-*dicarboxylate* (**1b**). A soln. of LiO(*t*-Bu) in *t*-BuOH prepared from 1.5M BuLi in hexane (40 ml) and *t*-BuOH (150 ml) was added dropwise to a stirred soln. of **6** (4.00 g, 1.33 mmol) in toluene (500 ml) at 80°. After the addition, the soln. was stirred for 30 min at 80°, then cooled to r.t., washed with H₂O (3 × 150 ml), dried (MgSO₄), and evaporated and the residue crystallised from CHCl₃/MeOH: 4.60 g (90%) of **1b**. White needles. M.p. 193° (CHCl₃/MeOH): TLC (Al₂O₃, hexane/AcOEt 4:1): R_f 0.7 IR (KBr): 3094w (C=C); 2999, 2975m (sat. CH); 1715s (C=O); 1572m (C=C); 1392, 1367m (*t*-Bu); 1229s, 1164s, 1136s, 935m, 848m, 769m. ¹H-NMR (200 MHz, CDCl₃): 1.60 (*s*, 2 *t*-Bu); 2.68 (*s*, 6 H, CH₃-C(6,6')); 7.65 (*s*, 2 H, H-C(5,5')); 8.62 (*s*, H-C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 24.62 (CH₃-C(6,6')); 28.11 ((CH₃)C); 82.25 ((CH₃)₃C); 117.72 (C(5,5')); 122.50 (C(3,3')); 140.57, 156.30, 159.01 (C(2, 2), C(4,4'), C(6,6')); 164.65 (C=O). Anal. calc. for C₂₂H₂₈N₂O₄ (384.46): C 68.72, H 7.34, N 7.29; found: C 68.33, H 7.41, N 7.24.

4,4'-Bis[(tert-butoxy)carbonyl]-6,6'-dimethyl-2,2'-bipyridine 1-Oxide (**8b**) and 4,4'-Bis[(tert-butoxy)carbonyl]-6,6'-dimethyl-2,2'-bipyridine 1,1'-Dioxide (**9b**). A soln of $3\text{-ClC}_6H_4\text{CO}_3H$ (3.85 g, 18.8 mmol) in CHCl₃ (100 ml) was added dropwise to a stirred soln of **1b** (6.00 g, 15.6 mmol) in CHCl₃ (250 ml) maintaining the temp. at 0-5°. The soln was allowed to warm to r.t., stirred for 4 h, washed with sat. aq. Na₂CO₃ soln. (2 × 100 ml) and sat. aq. NaCl soln. (2 × 100 ml), dried (MgSO₄), and evaporated. The residue was separated by FC (silica gel, CHCl₃, then CHCl₃/MeOH 95:5): 5.10 g (81%) of **8b** and 1.17 g (18%) of **9b**, both white solids.

Data of **8b**: M.p. 160–161° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃): R_f 0.5. FT-IR (KBr): 3129w (C=CH); 3000, 2972, 2933m (sat. CH); 1716s (C=O); 1597, 1572m (C=C); 1396, 1367m (t-Bu); 1280s, 1170s, 1142s, 847m, 773m, 752m, 667m. ¹H-NMR (200 MHz, CDCl₃): 1.59 (s, 2 t-Bu); 2.57 (s, CH₃–C(6)); 2.67 (s, CH₃–C(6')); 7.71, 7.81 (2s, H–C(5), H–C(5')); 8.37 (s, H–C(3')); 8.75 (s, H–C(3)). ¹³C-NMR (50.3 MHz, CDCl₃): 1.8.33 (CH₃–C(6)); 24.50 (CH₃–C(6')); 28.05 ((CH₃)₃C); 82.37 ((CH₃)₃C); 121.55, 123.06, 125.46, 125.66 (C(3,3'), C(5, 5')); 127.16, 140.01, 147.27, 149.91, 150.38, 159.13 (C(2,2'), C(4,4'), C(6,6')); 163.08, 164.18 (C=O). Anal. calc. for C₂₂H₂₈N₂O₅ (400.46): C 65.98, H 7.05, N 7.00; found: C 65.77, H 7.13, N 7.08.

Data of **9b**: M.p. 195–196° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃): R_f 0.2. FT-IR (KBr): 3094w (C=C); 2999, 2975m (sat. CH); 1715s (C=O); 1572m (C=C); 1392, 1367m (*t*-Bu); 1297s, 1220s, 1164s, 1136s, 936m, 848m, 769m. ¹H-NMR (200 MHz, CDCl₃): 1.50 (s, 2 *t*-Bu); 2.51 (s, 6 H, CH₃–C(6,6')); 7.68 (s, 2 H, H–C(5,5')); 7.87 (s, H–C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 24.62 (CH₃–C(6,6')); 28.11 ((CH₃)₃C); 82.25 ((CH₃)₃C); 117.72 (C(5,5')); 122.50 (C(3,3')); 140.57, 156.30, 159.01 (C(2,2'), C(4,4'), C(6,6')); 164.65 (C=O). Anal. calc. for $C_{22}H_{28}N_2O_6$ (416.46): C 63.44, H 6.78, N 6.73; found: C 63.36, H 6.70, N 6.66.

Di(tert-*butyl)* 6-(*Hydroxymethyl)-6'-methyl-2,2'-bipyridine-4,4'-dicarboxylate* (**12b**). A mixture of **8b** (0.74 g, 1.85 mmol) and (CF₃CO)₂O (10 ml) was stirred at r.t. for 1 h. The excess anhydride was evaporated and the formed trifluoroacetate **10b** thoroughly dried under vacuum. To a soln. of the crude **10b** in THF/H₂O 2:1 (200 ml), Na₂CO₃ (0.15 g, 1.4 mmol) was added and stirred overnight. The THF was evaporated, the product extracted into CHCl₃, the org. layer dried (MgSO₄) and evaporated, and the residue crystallised from CHCl₃/hexane: **12b** (0.68 g, 91 %). Cream needles. M.p. 205-206° (CHCl₃/hexane). TLC (Al₂O₃, hexane/AcOEt 4:1): R_f 0.20. ¹H-NMR (200 MHz, CDCl₃): 1.56 (s, 2 *t*-Bu); 2.70 (s, CH₃-C(6')); 3.73 (*t*, *J* = 5.5, OH); 4.88 (*d*, *J* = 4.8, CH₂-C(6)); 7.68, 7.75 (2s, H-C(5)); 8.63 (s, H-C(3')); 8.79 (s, H-C(3)). ¹³C-NMR (50.3 MHz, CDCl₃): 24.56 (CH₃-C(6')); 28.08 ((CH₃)₃C); 64.23 (CH₂OH); 82.63 ((CH₃)₃C); 117.55, 119.40, 119.80, 122.87 (C(3,3'), C(5,5')); 141.16, 142.34, 155.10, 155.34, 159.18, 159.56 (C(2,2'), C(4,4'), C(6,6')); 164.05, 164.45 (C=O). Anal. calc. for C₂₂H₂₈N₂O₅ (400.46): C 65.98, H 7.05, N 7.00; found: C 65.87, H 6.97, N 7.00.

Di(tert-*butyl)* 6,6'-*Bis(hydroxymethyl)*-2,2'-*bipyridine-4,4'-dicarboxylate* (13b). A mixture of 9b (3.08 g, 7.40 mmol) and (CF₃CO)₂O (25 ml) was stirred at r.t. for 1 h, the excess anhydride evaporated, and the yellow, solid bis(trifluoroacetate) 11b dissolved in THF (20 ml) and treated with sat. aq. NaHCO₃ soln. (30 ml) at r.t. for 1 h. The THF was evaporated and the product extracted with CHCl₃(2 × 100 ml). The combined org. layers were dried (MgSO₄) and evaporated and the residue crystallised from CHCl₃/hexane: 1.95 g (63%) of 13b. White solid. M.p. 183–184° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃/MeOH 95:5): R_{Γ} 0.20. ¹H-NMR (200 MHz, CDCl₃): 1.62 (*s*, 2 *t*-Bu); 3.66 (*t*, *J* = 5.1, 2 OH); 4.90 (*d*, *J* = 5.0, 2 CH₂O); 7.78 (*s*, 2 H, H–C(5.5')); 8.77 (*s*, 2 H, H–C(3.3')).

¹³C-NMR (50.3 MHz, CDCl₃): 28.06 ((CH₃)₃C); 64.27 (CH₂OH); 82.84 ((CH₃)₃C); 119.27, 120.20, 119.80, 141.23, 154.80, 159.85 (C of bpy); 163.96 (C=O). Anal. calc. for $C_{22}H_{28}N_2O_6$ (416.46): C 63.44, H 6.78, N 6.73; found: C 63.60, H 6.75, N 6.69.

Di(tert-*butyl)* 6-(*Bromomethyl)*-6'-*methyl*-2,2'-*bipyridine*-4,4'-*dicarboxylate* (14b). A stirred soln. of 12b (0.62 g, 1.55 mmol) in CH₂Cl₂ (100 ml) at 0° was treated successively with MsCl (0.48 ml, 6.19 mmol) and Et₃N (1.73 ml, 12.4 mmol). The resulting yellow soln. was allowed to warm to r.t. and stirred for 20 min. The mixture was washed twice with sat. aq. NH₄Cl soln. (100 ml) and dried (MgSO₄). Evaporation of the solvent gave the crude mesylate as a brown oil which was dissolved in THF (100 ml). To the stirred soln., anh. LiBr (3.00 g, 34.5 mmol) was added and the mixture heated to 50° for 30 min. After evaporation, the crude product was partitioned between CHCl₃/sat. NH₄Cl soln. 1:1 (200 ml), the aq. layer separated and extracted with CHCl₃ (100 ml), the combined org. layer dried (MgSO₄) and evaporated, and the residue purified by CC (Al₂O₃, CHCl₃): 0.53 g (74%) of 14b. White needles. M.p. 178–179° (CHCl₃/MeOH). TLC (Al₂O₃, CHCl₃): R (0.90. ¹H-NMR (200 MHz, CDCl₃): 1.63 (*s*, 2 *t*-Bu); 2.68 (*s*, CH₃–C(6')); 4.67 (*s*, CH₂Br); 7.67, 7.93 (2*s*, 2 H, H–C(5,5)); 8.67, 8.78 (2*s*, 2 H, H–C(3',3)). ¹³C-NMR (50.3 MHz, CDCl₃): 2.4.53 (CH₃–C(6')); 2.8.04 ((CH₃)₃C); 33.50 (CH₂Br); 82.34, 82.66 ((CH₃)₃C); 117.85, 119.86, 122.71, 122.83, 140.59, 141.48, 155.38, 156.56, 157.22, 159.02 (C of bpy); 163.85, 164.47 (C=O). Anal. calc. for C₂₂H₂₇N₂O₄ (463.36): C 57.02, H 5.87, N 6.05; found: C 56.86, H 5.80, N 5.99.

Di(tert-butyl) 6,6'-Bis(bromomethyl)-2,2'-bipyridine-4,4'-dicarboxylate (15b). A stirred suspension of 13b (2.31 g, 5.54 mmol) in CH₂Cl₂ (150 ml) at 0° was treated successively with MsCl (2.14 ml, 27.6 mmol) and Et₃N (6.20 ml, 44.8 mmol). The resulting yellow soln. was allowed to warm to r.t. and stirred for 15 min. The mixture was washed with sat. aq. NH₄Cl soln. (2 × 100 ml), dried (MgSO₄), and evaporated. To the crude dimesylate (brown oil) in THF (150 ml), anh. LiBr (6.01 g, 70.2 mmol) was added under stirring and the mixture heated to 40° for 1 h. After evaporation, the crude product was partitioned between CHCl₃/sat. aq. NH₄Cl soln. 1:1 (200 ml). The aq. layer was separated and extracted with CHCl₃ (100 ml). The combined org. layer was dried (MgSO₄) and evaporated and the residue purified by CC (Al₂O₃, CH₂Cl₂): 2.41 g (71%) of 15b. White needles. M.p. 183–184° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃): R_f 0.75. FT-IR (KBr): 3069w (C=CH); 2975m (sat. CH); 1712s (C=O); 1593w, 1561m (C=C); 1367m (t-Bu); 1297s, 1153s (C-O); 946m, 918m, 844m, 769m, 689m, 590m. ¹H-NMR (200 MHz, CDCl₃): 1.63 (s, 2 t-Bu); 4.67 (s, CH₂Br); 7.95 (s, 2 H, H-C(5,5)); 8.81 (s, 2 H, H-C(3,3)). ¹³C-NMR (50.3 MHz, CDCl₃): 28.11 ((CH₃)₃C); (46.51 (CH₂Br); 82.89 ((CH₃)₃C); 120.15, 123.15, 141.69, 155.86, 157.37 (C of bpy); 163.84 (C=O). Anal. calc. for C₂₂H₂₆Br₂N₂O₄ (542.25): C 48.73, H 4.83, N 5.17; found: C 48.95, H 4.83, N 5.19.

Tetra(tert-*butyl*) 6',6'''-*Dimethyl*-6.6''-[oxybis(methylene)]bis[2,2'-bipyridine]-4,4',4'',4'''-tetracarboxylate (**2b**). To a stirred soln. of **12b** (120 mg, 0.30 mmol) in *t*-BuOH (60 ml), KO(*t*-Bu) (40 mg, 0.36 mmol) was added. After 1 h, **14b** (140 mg, 0.30 mmol) in CH₂Cl₂ (5 ml) was added and the soln. stirred at r.t. for 2 h. A second portion of base was added (10 mg, 0.09 mmol) and the soln. refluxed overnight. Evaporation afforded a yellow solid which was purified by CC (Al₂O₃, CH₂Cl₂): 100 mg (43%) of **2b**. White solid. M.p. 182–183° (CHCl₃/MeOH). TLC (Al₂O₃, CHCl₃): R_f 0.85. FT-IR (KBr): 3090w (C=CH); 2980, 2928m (sat. CH); 1719s (C=O); 1593w, 1564m (C=C); 1392, 1367m (*t*-Bu); 1297s, 1164s (C-O); 1132s, 942m, 844m, 769m, 692m. ¹H-NMR (200 MHz, CDCl₃): 1.52, 1.53 (2s, 4 *t*-Bu); 2.50 (s, 6 H, CH₃-C(6',6''')); 4.82 (s, CH₂OCH₂); 7.79 (s, 2 H, H-C(5',5''')); 8.46 (s, 2 H-C(5,5'')); 9.38, 9.53 (2s, 2 H-C(3,3''), 2 H-C(3',3''')). ¹³C-NMR (50.3 MHz, CDCl₃): 24.59 (CH₃-C(6,6''')); 28.10 ((CH₃)₃C); 73.90 (CH₂OCH₂); 82.63, 82.40 ((CH₃)₃C); 117.77, 119.48, 120.61, 122.68, 140.62, 141.22, 155.91, 156.24, 158.98, 159.05 (C of byp); 164.41, 164.58 (C=O). FAB-MS (pos. mode): 783.2 (calc. 782.9). Anal. calc. for C₄₄H₅₄N₄O₉ (782.90): C 67.50, H 6.95, N 7.16; found: C 67.35, H 6.82, N 7.05.

Tetra(tert-*buty*]) 6'-(*Bromomethy*])-6'''-*methy*]-6,6''-[*oxybis*(*methy*]*ene*)]*bis*[2,2'-*bipyridine*]-4,4',4'',4'''-*te*-*tracarboxy*]*tet* (**16b**). To a stirred soln. of **12b** (290 mg, 0.724 mmol) in *t*-BuOH (50 ml) was added KO(*t*-Bu) (90 mg, 0.80 mmol). After 1 h at r.t., **15b** (0.40 g, 0.737 mmol) in CH₂Cl₂ (5 ml) was added. The soln. was stirred at r.t. for 1 h and refluxed for 1 h. Addition of H₂O (1.0 ml) and evaporation afforded a yellow solid which was purified by CC (silica gel, CH₂Cl₂/MeOH 95:5). Crystallisation from CHCl₃/MeOH gave 190 mg (30%) of **16b**. White solid. M.p. 113° (Et₂O, hexane). TLC (Al₂O₃, CHCl₃): R_f 0.75. ¹H-NMR (200 MHz, CDCl₃): 1.58, 1.59, 1.60, 1.61 (*4s*, *t*-Bu); 2.68 (*s*, CH₃-C(6''')); 4.67 (*s*, CH₂Br); 4.97 (*s*, CH₂OCH₂); 7.24 (*s*, 1 H); 7.65 (*d*, *J* = 1.4, 1 H); 7.93 (*d*, *J* = 1.5, 1 H); 8.63 (*s*, 1 H); 8.81 (*s*, 1 H); 8.77 (*s*, 2 H); 8.81 (*s*, 1 H). ¹³C-NMR (50.3 MHz, CDCl₃): 24.54 (CH₃-C(6''')); 28.06 ((CH₃)₃C); 33.45 (CH₂Br); 73.80, 73.88 (CH₂O); 82.26, 82.37, 82.49, 82.69 ((CH₃)₃C); 117.75, 119.45, 119.62, 119.91, 120.60, 120.98, 122.66, 122.80, 140.65, 141.20, 141.28, 141.57, 155.43, 155.84, 156.18, 157.28, 159.01, 159.90 (C of bpy); 163.81, 164.30, 164.36, 164.50 (C=O). Anal. calc. for C₄₄H₅₃BrN₄O₁₀· 3 H₂O (915.86): C 57.69, H 6.49; found: C 57.60, H 6.19.

Tetra(tert-butyl) 6'-(Hydroxymethyl)-6'''-methyl-6,6''-[oxybis(methylene)]bis[2,2'-bipyridine]-4,4',4'''tetracarboxylate (17b). A stirred soln. of 16b (270 mg, 0.31 mmol) in DMF (10 ml) was treated with NaOAc (200 mg, 2.4 mmol) at 50° for 1 h. The DMF was evaporated and the residue dissolved in CH₂Cl₂/H₂O. The org. layer was separated and the aq. phase extracted twice with CH₂Cl₂. The combined org. layer was dried (MgSO₄) and evaporated and the crude corresponding acetate (240 mg) in THF (35 ml) treated with a Na₂CO₃ soln. (60 mg, 0.57 mmol) in H₂O (30 ml), heated to reflux overnight, and cooled to r.t. The THF was evaporated, the product extracted into CH₂Cl₂ and dried (MgSO₄), and the residue purified by CC (silica gel, CH₂Cl₂/MeOH 95:5): 200 mg (81%) of **17b**. White solid. M.p. 113° (Et₂O/hexane). TLC (Al₂O₃, CHCl₃): R_{f} 0.30. FT-IR (KBr): 3508*m* (br. OH); 2978*m*, 2928*w* (sat. CH); 1719*s* (C=O); 1596*w*, 1568*m* (C=C); 1392, 1367*m* (*t*-Bu); 1301*s*, 1160*s* (C-O); 1135*m*, 848*m*, 769*m*, 756*m*, 692*m*. ¹H-NMR (200 MHz, CDCl₃): 1.60, 1.61, 1.62 (3*s*, 4 *t*-Bu); 2.71 (*s*, CH₃-C(6^{*m*})); 4.91 (*s*, CH₂OH); 5.00 (*s*, CH₂OCH₂); 7.67 (*d*, *J* = 1.1, H-C(5^{*m*})); 7.78 (*d*, *J* = 1.0, H-C(5^{*n*})); 8.08, 8.10 (2*d*, *J* = 1.2, H-C(5), H-C(5^{*m*})); 8.44 (*s*, H-C(3^{*m*})); 8.78-8.80 (*m*, H-C(3), H-C(3^{*n*})). ¹³C-NMR (50.3 MHz, CDCl₃): 24.56 (CH₃-C(6^{*m*})); 28.06 ((CH₃)₃C); 64.20 (CH₂OH); 7.77, 73.88 (CH₂O); 82.31, 82.43, 82.60, 82.69 ((CH₃)₃C); 117.77, 119.28, 119.50, 120.00, 120.60, 121.01, 122.71, 140.59, 141.23, 155.28, 155.84, 156.18, 158.90, 159.04, 159.16 (C of bpy); 164.04, 164.21, 164.53 (C=O). Anal. calc. for C₄₄H₅₄N₄O₁₀ (798.90): C 66.15, H 6.81, N 7.01; found: C 65.82, H 6.87, N 6.71.

Tetra(tert-*butyl*) 6,6"- {{4,4'-Bis[(tert-butoxy)carbonyl]-2,2'-bipyridine-6,6'-diyl}bis(methyleneoxymethylene)}-6',6"''-dimethylbis[2,2'-bipyridine]-4,4',4",4"''-tetracarboxylate (**3b**). To a stirred soln. of **12b** (1.00 g, 2.50 mmol) in *t*-BuOH (250 ml), KO(*t*-Bu) (0.34 g, 3.00 mmol) was added. After 1.25 h at r.t., **15b** (0.66 g, 1.22 mmol) CH₂Cl₂ (10 ml) was added dropwise. The soln. was refluxed for 4 h, a second portion of base added (0.10 g, 0.89 mmol), and the soln. refluxed overnight. Evaporation afforded a yellow solid which was purified by CC (Al₂O₃, CHCl₃). Crystallisation from CHCl₃/MeOH gave 0.70 g (49%) of **3b**. White solid. M.p. 135–136° (CHCl₃/MeOH). TLC (Al₂O₃, CHCl₃): *R*_f 0.80. FT-IR (KBr): 3090w (C=CH); 2978m, 2928w (sat. CH); 1723s (C=O); 1593w, 1564m (C=C); 1392, 1367m (*t*-Bu); 1297s, 1164s (C-O); 1132s, 942m, 844m, 769m, 756m, 692m. ¹H-NMR (200 MHz, CDCl₃): 1.55, 1.59, 1.61 (3.6 *t*-Bu); 2.68 (*s*, 6 H, CH₃-C(6',6"'')); 4.98 (*s*, 2 CH₂OCH₂); 7.66 (*s*, 2 H, H-C(5',5"'')); 8.06 (*s*, 4 H, H-C(5,5"), H-C(5^{1V},5^V)); 8.63, 8.78 (2*s*, 6 H, H-C(3,3"), H-C(3',3"''), H-C(3^{1V},3^V)). ¹³C-NMR (50.3 MHz, CDCl₃): 24.57 (CH₃-C(6',6"'')); 28.05 ((CH₃)₃C); 73.83 (CH₂O); 82.27, 82.39 ((CH₃)₃C); 117.73, 119.44, 120.58, 122.66, 140.50, 141.18, 155.82, 156.19, 158.99 (C of bpy); 164.36 (C=O). FAB-MS (pos. mode): 1181.5 (calc. 1181.4). Anal. calc. for C₆₆H₈₀N₆O₁₄ (1181.35): C 67.10, H 6.83, N 7.11; found: C 67.24, H 6.89, N 6.56.

Tetra(tert-*butyl)* 6',6'''-*Dimethyl*-6,6''- {*loxybis(methylene)* }*bis* {*4*,4'-*bis*[*l* tert-*butoxy*)*carbonyl*]-2,2'-*bipyridine*-6',6-*diyl*}*bis(methyleneoxymethylene*) }*bis*[2,2'-*bipyridine*]-4,4',4'',4'''-*tetracarboxylate* (**4b**). To a stirred soln. of **17b** (100 mg, 0.125 mmol) in *t*-BuOH (25 ml) was added KO(*t*-Bu) (15 mg, 0.137 mmol). After 1.5 h at r.t., **16b** (108 mg, 0.125 mmol) in CH₂Cl₂ (2 ml) was added dropwise. The soln. was stirred at 60° for additional 15 h. After addition of H₂O (1.0 ml) the solvent was evaporated. Purification was effected by prep. TLC (Al₂O₃, hexane/CH₂Cl₂ 1:1): 82 mg (42%) of **4b**. White solid. M.p. 137–139° (CHCl₃/MeOH). TLC (Al₂O₃, CHCl₃): R_f 0.70. FT-IR (KBr): 3090w (C=CH); 2975*m*, 2928w (sat. CH); 1722*s* (C=O); 1594*w*, 1563*m* (C=C); 1390, 1365*m* (*t*-Bu); 1295*s*, 1162*s* (C–O); 1130*s*, 767*m*, 754*m*, 690*m*. ¹H-NMR (200 MHz, CDCl₃): 1.55, 1.59, 1.61 (3*s*, 8 *t*-Bu); 2.68 (*s*, CH₃-C(6',6''')); 8.63, 8.78 (2*s*, 8 H, H–C(3,3''), 2 H–C(3',3'''), 2 H–C(3^{1V}, 3^{V1}), 1³C-NMR (50.3 MHz, CDCl₃): 24.57 (CH₃-C(6',6''')); 28.05 ((CH₃)₃C); 73.83 (CH₂OCH₂); 82.27, 82.39 ((CH₃)₃C); 117.73, 119.44, 120.58, 122.66, 140.50, 141.18, 155.82, 156.21, 158.99 (C of bpy); 164.36 (C=O). FAB-MS (pos. mode): 1581.0 (calc. 1579.8). Anal. calc. for C₈₈H₁₀₆N₈O₁₉ (1579.79): C 66.90, H 6.76; found: C 67.04, H 7.16.

Tetra(tert-*buty*]) 6,6"- {{4,4'-Bis[(tert-butoxy)carbony]]-2,2'-bipyridine-6,6'-diyl}bis(methyleneoxymethylene)bis {4,4'-bis [(tert-butoxy)carbony]]-2,2'-bipyridine-6',6-diyl}bis (methyleneoxymethlene)}-6',6"''-dimethylbis[2,2'-bipyridine]-4,4',4",4"''-tetracarboxylate (**5b**). To a stirred soln. of **17b** (125 mg, 0.15 mmol) in *t*-BuOH (25 ml), KO(*t*-Bu) (20 mg, 0.18 mmol) was added. After 1.5 h at r.t, **15b** (44 mg, 0.074 mmol) in CH₂Cl₂ (2 ml) was added dropwise. The soln. became turbid and was stirred for additional 10 h. After addition of H₂O (1.0 ml) and evaporation, the residue was purified by prep. TLC (Al₂O₃, hexane/CH₂Cl₂ 1:1): 32 mg (21%) of **5b**. White solid. M.p. 135–136° (CHCl₃/MeOH). TLC (Al₂O₃, CHCl₃): R_t 0.80. FT-IR (KBr): 3090w (C=CH); 2978m, 2928w (sat. CH); 1723s (C=O); 1593w, 1564m (C=C); 1392, 1367m (*t*-Bu); 1297s, 1164s (C-O); 1132s, 942m, 844m, 769m, 756m, 692m. ¹H-NMR (200 MHz, CDCl₃): 1.55, 1.59, 1.61 (3s, 10 *t*-Bu); 2.68 (s, 6 H, CH₃-C(6',6''')); 4.98 (s, 4 CH₂OCH₂); 7.66 (s, 2 H, H-C(5',5''')); 8.06 (s, 8 H, H-C(5,5''), H-C(5^{IV},5^{VI}), H-C(5^V,5^{VII}), H-C(5^{V,5VII}), H-C(5^{V,5VII}), H-C(5^{V,5VII}), H-C(5^{V,5VII}), H-C(5^{V,5VII}), H-C(5^{V,5VII}), H-C(5^{V,5VII}), 1.3C-NMR (50.3 MHz, CDCl₃): 24.57 (CH₃-C(6',6''')); 28.05 ((CH₃)₃C); 73.83 (CH₂OCH₂); 82.27, 82.39 ((CH₃)₃C); 117.73, 119.44, 120.58, 122.66, 140.50, 141.18, 155.82, 156.22, 158.99 (C of bpy); 164.36 (C=O). FAB-MS (pos. mode): 1979.5 (calc. 1979.24). Anal. calc. for C₁₁₀H₁₃₂N₁₀O₂₄ (1978.24): C 66.78, H 6.73, N 7.08; found: C 66.74, H 7.07, N 6.41. 4. Amide-Substituted Oligo(bipyridines) (c Series). N, N, N', N'-Tetraethyl-6,6'-dimethyl-2,2'-bipyridine-4,4'-dicarboxamide (1c). To a stirred suspension of AlCl₃ (16.0 g, 118 mmol) in toluene (250 ml), Et₂NH (21.0 ml, 197 mmol) was added dropwise, while the temp. was kept at 25–30° (ice-bath). Then, **6** (5.90 g, 19.6 mmol) was added. The mixture was stirred at 40° for 3 h (TLC (Al₂O₃, CH₂Cl₂/MeOH 95:5): no **6** left), H₂O (100 ml) added dropwise, the org. layer separated and evaporated, and the crude product filtered over Al₂O₃ (CH₂Cl₂/MeOH 98:2) and crystallised from acetone: 7.20 g (96%) of **1c**. White solid. M.p. 191–192° (acetone). TLC (Al₂Cl₃, CHCl₃/MeOH 98:2): *R*_f 0.40. IR (KBr): 3060w (C=CH); 2960, 2920m (sat. CH); 1625s (C=O); 1590, 1550m (C=C); 1470s, 1380m, 890s, 835s, 710m, 690m. ¹H-NMR (200 MHz, CDCl₃): 1.14 (*t*, *J* = 7, 2 CH₃CH₂); 7.14 (*d*, *J* = 1.1, 2 CH₃CH₂); 2.64 (*s*, 6 H, CH₃-C(6,6')); 3.25 (*q*, *J* = 7, 2 CH₃CH₂); 3.57 (*q*, *J* = 7, 2 CH₃CH₂); 7.14 (*d*, *J* = 1.1, 2 H, H-C(5,5')); 8.20 (*d*, *J* = 1.1, H-C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 12.81, 14.16 (CH₃CH₂); 24.59 (CH₃-C(6,6')); 39.20, 43.17 (CH₃CH₂); 115.23 (C(5,5')); 122.22 (C(3,3')); 145.79 (C(4,4')); 155.47 (C(2,2')); 188.55 (C(6,6')); 169.09 (C=O). EI-MS (70 eV): 382.49 (*M*⁺). Anal. calc. for C₂₂H₃₀N₄O₂ (382.49): C 69.08, H 7.91, N 14.60; found: C 69.33, H 8.37, N 14.44.

4,4'-Bis(diethylcarbamoyl)-6,6'-dimethyl-2,2'-bipyridine 1-Oxide (8c) and 4,4'-Bis(diethylcarbamoyl)-6,6'-dimethyl-2,2'-bipyridine 1,1'-Dioxide (9c). A soln. of $3-\text{ClC}_6\text{H}_4\text{CO}_3\text{H}$ (4.8 g, 27.9 mmol) in CHCl₃ (100 ml) was added dropwise to a stirred soln. of 1c (5.80 g, 15.2 mmol) in CHCl₃ (100 ml) keeping the temp. at 0-5°. The soln. was allowed to warm to r.t., stirred for 2 h, then washed subsequently with sat. aq. Na₂CO₃ soln. (20 ml) and H₂O (2 × 20 ml), dried (MgsO₄), and evaporated. FC (silica gel, CH₂Cl₂/MeOH first 96:4 then 90:10) gave 1.80 g (30%) of 8c and 3.10 g (49%) of 9c, both white solids.

Data of **8c**. M.p. 159–161° (acetone/Et₂O). TLC (Al₂O₃, CH₂Cl₂/MeOH 95:5): R_f 0.55. IR (KBr): 3060w (C=CH); 2960s, 2880m (sat. CH); 1620s (C=O); 1550s (C=C); 1430s, 1270s (NO); 820m, 755m, 700m. ¹H-NMR (200 MHz, CDCl₃): 1.15–1.38 (m, 4 CH₃CH₂); 2.59 (s, CH₃–C(6)); 2.64 (s, CH₃–C(6')); 3.22–3.40 (m, 2 CH₃CH₂); 3.45–3.53 (m, 2 CH₃CH₂); 7.21 (d, J = 1.1, H–C(5')); 7.36 (d, J = 2.4, H–C(5)); 8.10 (d, J = 2.5, H–C(3)); 8.88 (d, J = 1.1, H–C(3')). ¹³C-NMR (50.3 MHz, CDCl₃): 12.81, 14.15 (CH₃CH₂); 18.38 (CH₃–C(6)); 24.59 (CH₃–C(6')); 39.31, 43.31 (CH₃CH₂); 119.33, 120.95, 123.57, 123.98 (C(3), C(5), C(3'), C(5')); 145.20, 146.51 (C(4), C(4')); 149.08, 150.09, 158.75 (C(2), C(6), C(2'), (C(6')); 168.10, 168.66 (C=O). EI-MS (70 eV): 399 (MH⁺). Anal. calc. for C₂₂H₃₀N₄O₃ (398.51): C 69.08, H 7.91, N 14.60; found: C 68.05, H 7.96, N 14.48.

Data of **9c**. M.p. 152–155° (CH₂Cl₂). TLC (Al₂O₃, CH₂Cl₂/MeOH 95:5): R_f 0.40. IR (KBr): 3060w (C=CH); 2960m, 2920w (sat. CH); 1625s (C=O); 1540s (C=C); 1420m, 1375m, 1260s (NO); 800m, 760w, 720w. ¹H-NMR (200 MHz, CDCl₃): 1.13–1.38 (m, 4 CH₃CH₂); 2.59 (s, CH₃–C(6,6')); 3.38–3.54 (m, 4 CH₃CH₂); 7.41, 7.45 (2d, J = 2.3, 4 H). EI-MS (70 eV): 415 (MH⁺). Anal. calc. for C₂₂H₃₀N₄O₄ (414.51): C 69.08, H 7.91, N 14.60; found: C 68.05, H 7.96, N 14.48.

N, N, N', N'-*Tetraethyl-6-(hydroxymethyl)-6'-methyl-2,2'-bipyridine-4,4'-dicarboxamide* (**12c**). At r.t., **8c** (1.50 g, 3.76 mmol) was treated with (CF₃CO)₂O (15 ml) for 30 min. The excess anhydride was evaporated and the product dried under vacuum thoroughly. To the formed crude trifluoroacetate **10c** in THF/H₂O 1:1 (60 ml), Na₂CO₃ (5.00 g, 47.2 mmol) was added, the soln. stirred overnight, the THF evaporated, the product extracted into CH₂Cl₂, the org. layer dried (MgSO₄) and evaporated, and the residue crystallised from CH₂Cl₂/hexane: **12c** (1.20 g, 80%). White solid. M.p. 158–160° (CH₂Cl₂/hexane). TLC (Al₂O₃, CH₂Cl₂/MeOH 95:5): *R*₁ 0.45. IR (KBr): 3430s (OH); 2960*m*, 2920*w* (sat. CH); 1630s (C=O); 1560*m* (C=C); 1475s, 1450s, 1375*m*, 1080s, 845*m*, 790*m*, 765, 715*m*. ¹H-NMR (200 MHz, CDCl₃): 1.15 (*t*, *J* = 7, 2 CH₃CH₂); 1.28 (*t*, *J* = 7, 2 CH₃CH₂); 2.66 (*s*, CH₃-C(6')); 3.25 (*q*, *J* = 7, CH₃CH₂); 4.35 (*s*, CH₂OH); 7.18 (*d*, *J* = 0.9), 7.25 (*d*, *J* = 1.4, H-C(5), H-C(5')); 8.10, 8.36 (2*s*, H-C(3), H-C(3')). ¹³C-NMR (50.3 MHz, CDCl₃): 1.20.1, 14.34 (CH₃CH₂); 24.56 (CH₃-C(6')); 39.76, 42.13 (CH₃CH₂); 64.02 (CH₂OH); 115.11, 117.09, 118.43, 121.28 (C(3), C(3'), C(5), C(5')); 144.86, 146.00, 154.77, 155.50, 158.25, 160.98 (C(2), C(4), C(6), C(2'), C(4'), C(6')); 169 (C=O). EI-MS (70 eV): 398.50 (*M*⁺). Anal. calc. for C₂₂H₃₀N₄O₃ (398.49): C 66.30, H 7.59, N 14.06; found: C 66.25, H 7.82, N 13.75.

N, N, N', N'-Tetraethyl-6,6'-bis(hydroxymethyl)-2,2'-bipyridine-4,4'-dicarboxamide (13c). At r.t., 9c (3.08 g, 7.40 mmol) was treated with (CF₃CO)₂O (25 ml) for 1 h. The excess anhydride was evaporated and the crude bis(trifluoroacetate) 11c (yellow solid) dissolved in THF (20 ml) and treated with sat. aq. NaHCO₃ soln. (30 ml) at r.t. for 1 h. The THF was evaporated and the product extracted twice with CHCl₃ (100 ml). The combined org. layer was dried (MgSO₄) and evaporated and the residue crystallised from CHCl₃/hexane: 1.95 g (63%) of 13c. White solid. M.p. 184–186° (acetone/Et₂O). TLC (Al₂O₃, CH₂Cl₂/MeOH 95:5): $R_{\rm f}$ ol. 1. IR (KBr): 3440s (OH); 3060w (C=CH); 2970m, 2920m (sat. CH); 1620s (C=O); 1550m (C=C); 1480s, 1450s, 1375m, 1065s, 840m, 790m, 760m, 710m. ¹H-NMR (200 MHz, CDCl₃): 1.14 (t, J = 7, 2 CH₃CH₂); 1.28 (t, J = 7, 2 CH₃CH₂); 3.58 (q, J = 7, 2 CH₃CH₂); 4.86 (s, 2 CH₂OH); 7.30 (s, 2 H, H–C(5,5')); 8.26 (s, 2 H, H–C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 12.84, 14.22 (CH₃CH₂); 39.50, 42.30 (CH₃CH₂); 64.37 (CH₂OH); 116.52, 117.87,

(C(3,3'), C(5,5')); 146.03 (C(4,4')); 153.97 (C(2,2')); 160.35 (C(6,6')); 168.81 (C=O). EI-MS (70 eV): 414 (M⁺). Anal. calc. for C₂₂H₃₀N₄O₄ (414.50): C 63.75, H 7.30, N 13.52; found: C 63.53, H 7.50, N 13.31.

6-(Bromomethyl)-N,N,N',N'-tetraethyl-6'-methyl-2,2'-bipyridine-4,4'-dicarboxamide (14c). A stirred soln. of 12c (880 mg, 2.21 mmol) in CH₂Cl₂ (50 ml) at 0° was treated successively with Et₃N (2.0 ml, 14.2 mmol) and MsCl (0.50 ml, 6.46 mmol). After 1 h at 0° (TLC (Al₂O₃, CH₂Cl₂/MeOH 95:5): no 12c left), the mixture was washed with H₂O (100 ml), dried (CaCl₂), and evaporated. To the crude dimesylate (brown oily residue) in THF (40 ml), anh. LiBr (2.00 g, 23.4 mmol) was added under stirring and the mixture heated to 40° for 1 h. After evaporation, the crude product was partitioned between CH₂Cl₂/H₂O 1:1 (100 ml). The aq. layer was separated and extracted with CH₂Cl₂(100 ml), the combined org. layer dried (MgSO₄) and evaporated, and the crude product purified by CC (Al₂O₃, CH₂Cl₂/MeOH 98:1): 730 mg (79%) of 14c. White solid. M.p. 120–122° (acetone). TLC (Al₂O₃, CH₂Cl₂/MeOH 98:2): R_f 0.65. IR (KBr): 3060w, 3040w (C=CH); 2970m, 2920w (sat. CH); 1635s (C=O); 150m (C=C); 1470s, 790m, 760m. ¹H-NMR (200 MHz, CDCl₃): 1.17 (t, J = 7, 4, 2 CH₃CH₂); 3.58 (q, J = 7, 2 CH₃CH₂); 4.62 (s, CH₂Br); 7.18, 7.45, 8.26, 8.38 (4s, H of bpy). Anal. calc. for C₂₂H₂9BrN₄O₂ (461.19): C 57.26, H 6.33, N 12.14; found: C 57.39, H 6.49, N 11.86.

6,6'-Bis(bromomethyl)-N, N, N', N'-tetraethyl-2,2'-bipyridine-4,4'-dicarboxamide (15c). A stirred soln. of 13c (800 mg, 1.93 mmol) in CH₂Cl₂ (50 ml) at 0° was treated successively with Et₃N (3.0 ml, 21.7 mmol) and MsCl (0.75 ml, 9.67 mmol). After 1 h at 0° (TLC (Al₂O₃, CH₂Cl₂/MeOH 96:4): no 13c left), the mixture was washed with H₂O (100 ml), dried (MgSO₄) and evaporated. To the crude dimesylate (brown oily residue) in THF (50 ml), anh. LiBr (1.50 g, 17.5 mmol) was added under stirring and the mixture heated to 40° for 1 h. After evaporation, the crude product was partitioned between CH₂Cl₂/H₂O 1:1 (200 ml), the aq. layer separated and extracted with CH₂Cl₂ (100 ml), the combined org. layer dried (MgSO₄) and evaporated, and the crude product purified by CC (silica gel, CH₂Cl₂/MeOH 99.5:0.5): 730 mg (70%) of 15c. White solid. M.p. 172–174° (CH₂Cl₂/MeOH): TLC (Al₂O₃, CH₂Cl₂/MeOH 98:2): R₁ 0.65. IR (KBr): 3060w, 3040w (C=CH); 2970m, 2920w (sat. CH); 1635s (C=O); 1550m (C=C); 1470s, 1450m, 1375m, 850m, 790m, 760m, 720m. ¹H-NMR (200 MHz, CDCl₃): 1.19 (*t*, *J* = 7.4, 2 CH₃CH₂); 1.30 (*t*, *J* = 7.4, 2 CH₃CH₂); 3.26 (*q*, *J* = 7.4, 2 CH₃CH₂); 3.58 (*q*, *J* = 7, 2 CH₃CH₂); 4.62 (s, CH₂Br); 3.40 (s, 2 H, H-C(5.5')); 8.40 (s, 2 H, H-C(5.5')); 121.00 (C(3.3')); 146.77 (C(4.4')); 155.10 (C(2.2')); 156.99 (C(6.6')); 168.36 (C=O). EI-MS (70 eV): 540 (M⁺). Anal. calc. for C₂₂H₂₈Br₂N₄O₂ (540.30): C 48.90, H 5.22, N 10.37; found: C 48.71, H 5.35, N 9.88.

6,6" - {[4,4'-Bis(diethylcarbamoyl)-2,2'-bipyridine-6,6'-diyl]bis(methyleneoxymethylene)}-N,N,N',N",N", N"",N"", N"", octaethyl-6',6""-dimethylbis[2,2'-bipyridine]-4,4',4",4""-tetracarboxamide (3c). To a stirred soln. of 12c (933 mg, 2.34 mmol) in THF (200 ml) at 0°, NaH (101 mg, 2.53 mmol) was added. The resulting soln. was allowed to warm to r.t. during 70 min. After addition of 15c (506 mg, 0.936 mmol), the mixture was stirred at 40° for 12 h (TLC monitoring (alumina, CH₂Cl₂/MeOH 98:2)). Then, H₂O (30 ml) was added, and the solvents were evaporated. The crude product was partitioned between H₂O/CH₂Cl₂ 1:1 (200 ml). The org. phase was separated, the aq. phase extracted with CH₂Cl₂ (2 × 100 ml), the combined org. layer dried (Na₂SO₄), filtered, and evaporated: 1.39 g of crude product. The excess of 12c was separated by CC (100 g of alumina CH₂Cl₂/MeOH 98:2): non polar 1st fraction and 12c (250 mg, 0.627 mmol) as the 2nd fraction. Purification of the 1st fraction by CC (silica gel, CH₂Cl₂/MeOH 97:3) afforded 10 mg (0.012 mmol) of 16c and 840 mg (0.715 mmol, 76%) of 3c as a white solid. M.p. 230-231° (acetone). TLC (Al₂O₃, CH₂Cl₂/MeOH 98:2): R₁ 0.65. UV (MeCN/CHCl₃ 97:3): 292 (43100). IR (KBr): 2970m, 2920w (sat. CH); 1630s (C=O); 1550m (C=C); 1470s, 1450m, 1370m, 1100m (C–O); 800m, 755m, 720m, 620m. ¹H-NMR (200 MHz, CDCl₃): 1.03–1.18 (m, 6 CH₃CH₂); 1.21–1.36 (m, 6 CH₃CH₂); 2.69 (s, CH₃-C(6',6''')); 3.15–3.31 (m, 6 CH₃CH₂); 3.50–3.66 (m, 6 CH₃CH₂); 4.91 (s, 2 CH₂OCH₂); 7.19 (s, 2 H, H-C(5',5'''); 7.56 (*s*, 4 H, H-C(5,5''), H-C(5^{IV},5^V)); 8.21 (*d*, J = 1.0, 2 H, H-C(3',3''')); 8.33, 8.39 (2*d*, J = 1.0, 4 H, H-C(3,3''), H-C(3^{IV},3^V)). ¹³C-NMR (50.3 MHz, CDCl₃): 12.83, 14.22 (CH₃CH₂); 24.50 (CH₃-C(6',6''')); 39.32, 43.28 (CH₃CH₂); 73.77 (CH₂O); 115.35, 116.94, 117.10, 118.06, 118.17, 120.35 (CH of bpy); 146.01, 146.34 (C(4,4''), C(4',4'')), C(4^{IV},4^V)); 155.12, 155.29, 158.53, 158.61 (C(2,2''), C(6,6''), C(2',2'''), C(6',6'''), C(2^{IV},2^V), C(6^{IV},6^V)); 168.94 (C=O). FAB-MS: 1175.5 ([M + H]⁺). Anal. calc. for C₅₄H₈₆N₁₂O₈ (1175.49): C 67.40, H 7.37, N 14.30; found: C 67.14, H 7.20, N 13.96.

6'-(*Bromomethyl*)-N, N, N', N", N", N"', N"'', N"''-octaethyl-6, [oxybis(methylene)]bis[2,2'-bipyridine]-4,4',4", 4"''-tetracarboxamide (16c). To a stirred soln. of 12c (265 mg, 0.665 mmol) in THF (50 ml) at 0°, NaH (22 mg, 0.925 mmol) was added. After 1 h at r.t., 15c (380 mg, 0.703 mmol) was added. The soln. was stirred at r.t. for 24 h. Addition of MeOH (5.0 ml) and evaporation afforded a yellow oily residue which was purified by FC (silica gel, CH₂Cl₂/MeOH 98:2-+95:5). Crystallisation from acetone gave 208 mg (36%) of 16c as a white solid. A second fraction of the CC gave 219 mg (0.186 mmol) of the more polar 3c. 16c: M.p. 91–93°. TLC (Al₂O₃, CH₂Cl₂/MeOH 98:2): $R_{\rm f}$ 0.35. ¹H-NMR (200 MHz, CDCl₃): 1.03–1.16 (m, 4 CH₃CH₂); 1.21–1.38 (m, 4 CH₃CH₂); 2.69 (s, CH₃-C(6")); 3.17–3.35 (m, 4 CH₃CH₂); 3.50–3.66 (m, 4 CH₃CH₂); 4.62 (s, CH₂Br); 4.91 (s, CH₂OCH₂); 7.19, 7.46, 7.56 (3s, 4 H, H-C(5,5"), H-C(5',5"')); 8.21, 8.33, 8.39 (3s, 4 H, H-C(3,3"), H-C(3',3"')). ¹³C-NMR (50.3 MHz, CDCl₃): 12.99, 14.36 (CH₃CH₂); 24.68 (CH₃-C(6")); 33.61 (CH₂Br); 39.50, 43.45 (CH₃CH₂); 7.3.86 (CH₂O); 115.46, 117.23, 117.49, 118.21, 118.59, 120.64, 120.90, (CH of bpy); 145.82, 146.00 (C(4',4"), C(4',4"')); 154.89, 155.63, 158.65, 158.83 (C of bpy); 168.57, 169.05 (C=O). Anal. calc. for C₄₄H₆₁BrN₈O₄· 3H₂O (911.93): C 57.94, H 6.96, N 12.28; found: C 57.37, H 7.06, N 12.24.

N, N, N', N'', N''', N''', N''', N''', Octaethyl-6'-(hydroxymethyl)-6'''-methyl-6,6''-[oxybis(methylene)]bis [2, 2'-bipyridine]-4,4',4'',4'''-tetracarboxamide (17c). A stirred soln. of 16c (220 mg, 0.26 mmol) in DMF (20 ml) was treated with NaOAc (220 mg, 2.90 mmol) at 110° for 30 min. The DMF was evaporated, the residue partitioned between H₂O/CH₂Cl₂ 2:3 (50 ml), the org. layer evaporated, and the resulting dimer monoacetate in THF (30 ml) treated with a soln. of Na₂CO₃ (420 mg) in H₂O (30 ml) at r.t. for 20 h. After evaporation of the THF, the precipitate was filtered off and dried *in vacuo* : 113 mg (55%) of 17c. White solid M.p. 176–178°. TLC (Al₂O₃, CHCl₃/MeOH 95 : 5): R_f 0.40. ¹H-NMR (200 MHz, CDCl₃): 1.07–1.16 (*m*, 4 CH₃CH₂); 1.21–1.38 (*m*, 4 CH₃CH₂); 2.64 (*s*, CH₃-C(6''')); 3.17–3.35 (*m*, 4 CH₃CH₂); 3.50–3.66 (*m*, 4 CH₃CH₂); 4.85 (*s*, CH₂OH); 4.91 (*s*, CH₂OCH₂); 7.16, 7.54, 7.57 (3*s*, 4 H, H–C(5,5''), H–C(5',5''')); 8.19, 8.32, 8.35 (3*s*, 4 H, H–C(3,3''), H–C(3',3''')). ¹³C-NMR (50.3 MHz, CDCl₃): 12.80, 14.21 (CH₃CH₂); 24.50 (CH₃-C(6'''')); 39.31, 43.29 (CH₃CH₂); 64.0 (CH₂OH); 73.8 (CH₂OCH₂); 115.31, 116.92, 117.10, 118.08, 118.12, 120.33 (CH of bpy); 146.01, 146.32 (C(4, 4''), C(4', 4''')); 155.10, 155.29, 158.51, 158.63 (C of bpy); 168.93 (C=O). Anal. calc. for C4₄₄H₅₈N₈O₆ (794.97): C 66.47, H 7.35, N 14.09; found: C 65.91, H 7.20, N 13.28.

N, N, N', N'', N'', N''', N''', N'''-Octaethyl-6', 6'''-dimethyl-6, 6''- {[oxybis(methylene)]bis[4,4'-bis(diethylcarbamoyl)-2,2'-bipyridine-6', 6-diyl]bis(methyleneoxymethylene)]bis[2,2'-bipyridine]-4,4',4'', 4'''-tetracarboxamide (4c). To a stirred soln. of 17c (113 mg, 0.14 mmol) in THF (40 ml) at 0°, NaH (6.5 mg, 0.27 mmol) was added and the soln. allowed to warm to r.t. within 1 h. After addition of 16c (122 mg, 0.14 mmol), the mixture was stirred for 20 h at 40° (TLC monitoring (Al₂O₃, CH₂Cl₂/MeOH 98:2)). Then, H₂O (2 ml) was added and the mixture evaporated. The crude product was partitioned between CH₂Cl₂/H₂O 1:1 (60 ml), the org. layer dried (MgSO₄), and the crude product purified by CC (Al₂O₃, CH₂Cl₂/MeOH 98:2): 124 mg (56%) of 4c. White solid. M.p. 246-248°. TLC (Al₂O₃, CHCl₃/MeOH 95:5): R_{f} 0.50. ¹H-NMR (200 MHz, CDCl₃): 1.03–1.16 (*m*, 8 CH₃CH₂); 1.21–1.38 (*m*, 8 CH₃CH₂); 2.69 (*s*, 6 H, CH₃-C(6',6''')); 3.17–3.35 (*m*, 8 CH₃CH₂); 3.50–3.66 (*m*, 8 CH₃CH₂); 4.91 (*s*, 3 CH₂OCH₂); 7.19 (*s*, 2 H, H-C(5,5''')); 7.56 (*s*, 6 H, H-C(5,5''), H-C(5^{IV},5^{VI}), H-C(5^V,5^{VII})); 8.21 (*s*, 2 H, H-C(3',3''')); 8.33 (*s*, 2 H, H-C(3,5''')); 7.56 (*s*, 6 H, H-C(3^{IV},3^{VI}), H-C(3^V,3^{VII})). ¹³C-NMR (50.3 MHz, CDCl₃): 13.00, 14.39 (CH₃CH₂); 2.4.71 (CH₃-C(6',6'''')); 3.95, 24.3.40 (CH₃CH₂); 7.394 (CH₂OCH₂); 115.39, 117.12, 117.19, 118.10, 118.38, 120.58 (CH of bpy); 146.51 (C(4,4''), C(4',4'''), C(4',4''')); C(4'V,4^{VII})); 155.30, 158.62 (C of bpy); 169.11 (C=O). FAB-MS (pos. mode): 1571.9 (calc. 1571.83). Anal. calc. for C₈₈H₁₁₄N₁₆O₁₁ (1607.86): C 65.73, H 7.39, N 13.93; found: C 65.39, H 7.37, N 13.75.

6,6"- {[4,4'-Bis(diethylcarbamoyl)-2,2'-bipyridine-6,6'-diyl]bis(methyleneoxymethylene)bis[4,4'-bis(diethylcarbamoyl)-2,2'-bipyridine-6',6-diyl]bis(methyleneoxymethylene) }-N, N, N', N', N'', N''', N''', N''' octaethyl-6',6'''dimethylbis[2,2'-bipyridine]-4,4',4'',4'''-tetracarboxamide (5c). To a stirred soln. of 17c (100 mg, 0.13 mmol) in THF (10 ml), NaH (7 mg, 0.18 mmol) was added. After 1 h at r.t., 15c (34 mg, 0.065 mmol) was added, the soln. stirred for 15 h at 40° and evaporated and the yellow solid purified by FC (silica gel, CH₂Cl₂/MeOH 98 :2 \rightarrow 90:10): 94 mg (74%) of 5c. White solid. M.p. 254–256° (dec.; CHCl₃/MeOH). TLC (Al₂O₃, CHCl₃/MeOH 95 :5): *R*_f 0.40. ¹H-NMR (200 MHz, CDCl₃): 1.10–1.16 (*m*, 10 CH₃CH₂); 1.21–1.38 (*m*, 10 CH₃CH₂); 2.69 (*s*, 6 H, CH₃–C(6', 6''')); 3.17–3.35 (*m*, 10 CH₃CH₂); 3.50–3.66 (*m*, 10 CH₃CH₂); 4.91 (*s*, 4 CH₂OCH₂); 7.19 (*s*, 2 H, H–C(5', 5''')); 7.56 (*s*, 8 H, H–C(5,5''), H–C(5^{IV}, 5^{VI}), H–C(5^{VIII}, 5^{IX})); 8.21 (*s*, 2 H, H–C(3',3''')); 8.33 (*s*, 6 H, H–C(3,3''), H–C(3^{IV}, 3^{VI}), H–C(3^V, 3^{VII})); 8.39 (*s*, H–C(3^{VIII}, 3^{IX})). ¹³C-NMR (50.3 MHz, CDCl₃): 12.99, 14.38 (CH₃CH₂); 24.76 (*C*H₃–C(6',6''')); 39.52, 43.44 (CH₃CH₂); 73.97 (CH₂O); 115.37, 117.12, 118.16, 118.35, 120.58 (CH of bpy); 145.96, 146.51 (C(4,4''), C(4',4'''), C(4^{VII}, V^{II}), C(4^{VII}, 4^{VII})); 155.31, 155.75, 158.75 (C(2,2''), C(6,6''), C(6',6'''), C(2^{IV}, 2^{VI}), C(6^{IV}, 6^{VI}), C(2^V, 2^{VII}), C(6^V, 6^{VII}), C(2^{VIII}, 2^{IX}), C(6^{VIII}, 6^{IX})); 169.09 (C=O). FAB-MS (pos. mode): 1968.6 (calc. 1968.41). Anal. calc. for C₆₆H₈₀N₆O₁₄·4H₂O (2040.47): C 64.74, H 7.41, N 13.73; found: C 64.42, H 7.17, N 13.10.

5. Elongated Ester-Substituted Oligobipyridines (d and e Series). 6,6'-Dimethyl-2,2'-bipyridine-4,4'-dimethanol (7a). To a stirred suspension of 6 (16.0 g, 53.3 mmol) in THF (1 l) at -40°, LiAlH₄ (2.03 g, 53.5 mmol) was added. Within 1 h, the temp. of the mixture was raised to -10°, and more LiAlH₄ (2.03 g, 53.3 mmol) was added. Stirring for 2 h at r.t. completed the reaction (TLC control (Al₂O₃, CHCl₃/MeOH 95:5)). At 0°, H₂O (4.0 ml) was added dropwise very carefully followed by 2n aq. NaOH (8.0 ml). After 15 min, the green/white suspension was refluxed for 5 min and stirred at r.t. for 2 h. The white Al(OH)₃ precipitate was filtered off. Evaporation of the solvent and recrystallisation of the crude product from CHCl₃/Et₂O gave 7a (12.4 g, 50.7 mmol). White solid. M.p. 152°. TLC (Al₂O₃, CHCl₃/MeOH 95:5): *R*₁0.40. IR (KBr): 3290s (br. OH); 1600s, 1560s, 1400s, 1180m, 850m. ¹H-NMR (200 MHz, CDCl₃): 2.58 (*s*, 6 H, CH₃-C(6,6')); 4.67 (*s*, 2 CH₂O); 7.26 (*s*, 2 H, H-C(5,5')); 122.32 (C(3,3')); 154.49, 157.50, 159.83 (C(2,2'), C(4,4'), C(6,6')). Anal. calc. for C₁₁₄H₁₆N₂O₂ (244.29): C 68.82, H 6.60, N 11.47; found: C 68.86, H 6.69, N 11.46.

6,6'-Dimethyl-2,2'-bipyridine-4,4'-dicarbaldehyde (7b). Oxalyl chloride (8.0 ml, 92.0 mmol) was added to CH₂Cl₂ (400 ml) freshly filtered over basic aluminium oxide (act. I, 50 g) at -60° . N₂ was passed through the apparatus while DMSO (10.9 ml, 153.6 mmol) in CH₂Cl₂ (20 ml) was added dropwise over 5 min. After 10 min, a soln. of **7a** (7.50 g, 30.7 mmol) in THF (400 ml) was added within 15 min. The temp. was kept under -40° during this addition. After 45 min at -50° , Et₃N (40.0 ml, 284.6 mmol) was added dropwise over 5 min. The temp. was raised in 1 h to 0°. Addition of CHCl₃ (600 ml) and half-sat. aq. NH₄Cl soln. (600 ml) gave two phases. The org. layer was separated and the aq. layer washed twice with CHCl₃ (200 ml). Washing the combined org. layer with sat. aq. NaCl soln. (500 ml) and drying (MgSO₄) yielded, after evaporation, a light brown solid, which was purified by crystallisation from CHCl₃/Et₂O: 6.12 g (83%) of **7b**. White powder. M.p. 233°. TLC (Al₂O₃, CHCl₃/MeOH 98 :2): *R*_f 0.80. IR (KBr): 3062w (C=C); 2917w (sat. CH); 2851m (sat. CH); 2731w (CHO); 1596s (C=C); 1383m, 1260s, 1169s, 877m, 674m. ¹H-NMR (200 MHz, CDCl₃): 2.74 (s, 6 H, CH₃-C(6,6')); 7.59 (s, 2 H, H-C(5,5')); 8.66 (s, 2 H, H-C(5,3')); 10.15 (s, 2 CHO). ¹³C-NMR (50.3 MHz, CDCl₃): 2.462 (CH₃-C(6,6')); 118.01 (C(5,5')); 121.34 (C(3,3')); 143.02, 156.56, 159.91 (C(2,2'), C(4,4'), C(6,6')); 192.05 (CHO). Anal. calc. for C₁₄H₁₂N₂O₂ (240.26): C 66.98, H 5.00, N 11.66; found: C 66.93, H 5.09, N 11.42.

(E, E)-*Di*(tert-*butyl*) 6,6'-*Dimethyl*-2,2'-*bipyridine*-4,4'-*diacrylate* (7c). Dicarbaldehyde 7b (1.72 g, 7.16 mmol) and {[(*tert*-butoxy)carbonyl]methylidene}triphenylphosphorane (6.74 g, 17.9 mmol) were dissolved in toluene (150 ml). After 6 h at 70° (TLC (Al₂O₃, CHCl₃): no 7b left), the solvent was evaporated and the remaining crude product filtered over Al₂O₃ (50 g, CHCl₃) and purified by CC (200 g of Al₂O₃, CH₂Cl₂): 2.53 g (80%) of 7c. White solid. M.p. 211° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃): R_f 0.80. UV (CHCl₃): 319 (10870), 256 (42940). IR (KBr): 2920w (sat. CH); 1700s (C=O); 1640m (C=C, olef.); 1590, 1555s (C=C, arene); 1309, 1365s (*t*-Bu ester); 1315s, 1255s, 1150s, 985m ((*E*)-olefin); 855m. ¹H-NMR (200 MHz, CDCl₃): 1.55 (*s*, 2 *t*-Bu); 2.66 (*s*, 6 H, CH₃-C(6,6')); 6.64 (*d*, *J* = 16.0, 2 H, H-C($\alpha\alpha'$)); 7.23 (*s*, 2 H, H-C(5,5')); 7.58 (*d*, *J* = 16.0, 2 H, H-C(β, β')); 8.32 (*s*, 2 H, H-C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 24.61 (*C*H₃-C(6,6')); 28.17 ((*C*H₃)₃C); 81.12 ((CH₃)₃C); 116.52 (C(5,5')); 121.66 (C(3,3')); 124.55 (C(β,β')); 141.26 (C(α,α')); 143.11, 156.16, 158.82 (C(2,2'), C(4,4'), C(6,6')); 165.54 (C=O). Anal. calc. for C₂₆H₃₂N₂O₄ (436.54): C 71.53, H 7.39, N 6.42; found: C 71.51, H 7.45, N 6.20.

Di(tert-*butyl)* 6,6'-*Dimehtyl*-2,2'-*bipyridine*-4,4'-*dipropionate* (1d). To a soln. of 7c (2.21 g, 5.07 mmol) in toluene/EtOH 1:1 (200 ml), 5% Pd/C (300 mg) was added. The mixture was heated under H₂ (1 atm.) to 60°. After 2 h (TLC monitoring (Al₂O₃, CHCl₃)); the mixture was cooled to r.t., washed with N₂, and filtered over *Celite*. Evaporation and CC (120 g of Al₂O₃, CHCl₃) gave 1.89 g (85%) of 1d. White solid. M.p. 114° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃): *R*₁ (0.75. UV (CHCl₃): 292 (16080). IR (KBr): 2900w (sat. CH); 1705s (C=O); 1590, 1555s (C=C, arene); 1390, 1365s (*t*-Bu ester), 1300m, 1260m, 1140s (C-O); 875m, 850m. ¹H-NMR (200 MHz, CDCl₃): 1.43 (*s*, 2 *t*-Bu); 2.58 (*s*, 6 H, CH₃-C(6,6')); 2.57-2.64 (*m*, 2 H, H-C(β,β')); 2.91-2.98 (*m*, 2 H, H-C(α,α')); 7.00 (*s*, 2 H, H-C(5,5')); 8.03 (*s*, H-C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 24.53 (CH₃-C(6,6')); 28.05 ((CH₃)₃C); 30.45 (C(β,β')); 35.85 (C(α,α')); 80.64 ((CH₃)₃C); 118.25 (C(5,5')); 123.12 (C(3,3')); 150.64, 155.97, 157.80 (C(2,2'), C(4,4'), C(6,6')); 171.80 (C=O). Anal. calc. for C₂₆H₃₆N₂O₄ (440.57): C 70.88, H 8.24, N 6.36; found: C 70.96, H 8.46, N 6.11.

4,4'-Bis $\{2-f(\text{tert}-butoxy)\text{ carbonyl}/ethyl\}$ -6,6'-dimethyl-2,2'-bipyridine 1-Oxide (8d) and 4,4'-Bis $\{2-f(\text{tert}-butoxy)\text{ carbonyl}/ethyl\}$ -6,6'-dimethyl-2,2'-bipyridine 1,1'-Dioxide (9d). To a soln. of 1d (5.71 g, 12.9 mmol) in CHCl₃ (100 ml) at 0°, a soln. of 3-ClC₆H₄CO₃H (2.45 g, 14.2 mmol) in CHCl₃ (200 ml) was added dropwise within 30 min. After 30 min at 0° and 15 min at r.t. (TLC monitoring (Al₂O₃, CHCl₃/MeOH 98:2)), the solvent was evaporated and the crude product purified by CC (200 g of Al₂O₃, CH₂Cl₂, then CHCl₃/MeOH 98:2): 4.11 g (70%) of 8d and 0.98 g (16%) of 9d both white crystalline solids.

Data of **8d**: M.p. 132° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃/MeOH 98 :2): R_{f} 0.75. IR (KBr): 3055w (C=C); 2980w (sat. CH); 2916w (sat. CH); 1720s (C=O); 1550m (C=C, arene); 1434s, 1373, 1334s (*t*-Bu ester); 1253s, 1219s (*N*-oxide); 1149s (C-O); 883m, 820s. ¹H-NMR (200 MHz, CDCl₃): 1.39 (*s*, 2 *t*-Bu); 2.52 (*s*, CH₃-C(6)); 2.54 (CH₃-C(6')); 2.52-2.60 (*m*, 2 H-C(β), 2 H-C(β ')); 2.86-2.94 (*m*, 2 H-C(α), 2 H-C(α ')); 7.02 (*s*, H-C(5')); 7.10 (*d*, J(H-C(5),H-C(3)) = 2.5, H-C(5)); 7.80 (*d*, J(H-C(3),H-C(5)) = 2.5, H-C(3)); 8.47 (*s*, H-C(3')). ¹³C-NMR (50.3 MHz, CDCl₃): 18.38 (CH₃-C(6)); 24.39 (CH₃-C(6')); 28.00 ((CH₃)₃C); 29.58, 30.39 (C(β), C(β ')); 35.63, 35.82, (C(α), C(α ')); 80.55, 80.84 ((CH₃)₃C); 122.55, 123.73, 125.42, 125.64 (C(3), C(3'), C(5')); 138.77, 146.90, 149.14, 149.66, 150.15, 157.86 (C(2), C(2'), C(4), C(4'), C(6), C(6')); 171.44, 171.69 (C=O). Anal. calc. for C₂₆H₃₆N₂O₅ (456.57): C 68.39, H 7.95, N 6.14; found: C 68.20, H 8.13, N 6.10.

Data of **9d**: M.p. 165° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃/MeOH 98 :2): R_f 0.45. IR (KBr): 3055w (C=C); 2980w (sat. CH); 2916w (sat. CH); 1720s (C=O); 1550m (C=C, arene); 1434s, 1373, 1334s (*t*-Bu ester); 1253s, 1219s (*N*-oxide); 1149s (C-O); 883m, 820s. ¹H-NMR (200 MHz, CDCl₃): 1.36 (*s*, 2 *t*-Bu); 2.47 (*s*, CH₃-C(6,6')); 2.46–2.53 (*m*, 4 H, 2 H–C(β , β')); 2.82 (*t*, J(H–C(α), H–C(β) = 7.4, 4 H, 2 H–C(α , α')); 7.14 (*s*, H–C(3,3'), H–C(5,5')). ¹³C-NMR (50.3 MHz, CDCl₃): 17.77 (CH₃–C(6,6')); 27.88 ((CH₃)₃C); 29.24 (C(β , β'))); 35.39 (C(α , α')); 80.76 ((CH₃)₃C); 125.11, 126.56 (C(3,3'), C(5,5')); 138.04, 142.67, 148.83 (C(2,2'), C(4,4'), C(6,6')); 171.21 (C=O). Anal. calc. for C₂₆H₃₆N₂O₆ (472.57): C 66.08, H 7.68, N 5.93; found: C 66.07, H 7.85, N 5.83.

Di(tert-*butyl)* 6-(*Acetoxymethyl)*-6'-*methyl*-2,2'-*bipyridine*-4,4'-*dipropionate* (**10d**). A stirred soln. of **8d** (2.77 g, 6.07 mmol) in Ac₂O (80 ml) was heated to 130° for 15 min. Evaporation and CC (150 g of Al₂O₃, CHCl₃) of the remaining yellow oil gave 2.13 g (70%) of **10d**. Colourless oil. TLC (Al₂O₃, CHCl₃): R_{f} 0.50. ¹H-NMR (200 MHz, CDCl₃): 1.40 (*s*, 2 *t*-Bu); 2.17 (*s*, CH₃COO); 2.56 (*s*, CH₃-C(6')); 2.54–2.64 (*m*, 2 H–C(β), 2 H–C(β ')); 2.89–3.02 (*m*, 2 H–C(α), 2 H–C(α ')); 5.24 (*s*, CH₂–C(6)); 6.99, 7.17 (2*s*, H–C(5), H–C(5')); 8.04, 8.18 (2*s*, H–C(3), H–C(3')). ¹³C-NMR (50.3 MHz, CDCl₃): 20.92 (CH₃COO); 24.39 (CH₃–C(6')); 27.97 ((CH₃)₃C); 30.37, 30.51 (C(β), C(β ')); 35.71 (C(α), C(α ')); 67.00 (CH₂–C(6)); 80.59, 80.63 ((CH₃)₃C); 118.32, 120.11, 121.30, 123.38 (C(3), C(3'), C(5), C(5')); 150.68, 151.33, 155.17, 155.23, 156.07, 157.77 (C(2), C(2'), C(4), C(4'), C(6), C(6')); 171.53, 171.63 (C=O). Anal. calc. for C₂₈H₃₈N₂O₆ (498.60): C 67.44, H 7.68, N 5.62; found: C 67.27, H 7.63, N 5.40.

Di(tert-*butyl*) 6-(*Hydroxymethyl*)-6'-methyl-2,2'-bipyridine-4,4'-dipropionate (**12d**). To a soln. of **10d** (2.13 g, 4.27 mmol) in EtOH (200 ml), K_2CO_3 (1.00 g, 7.24 mmol) was added and stirred for 12 h at r.t. Evaporation and filtration of the remaining oil with CHCl₃/MeOH 98:2 over 50 g of Al₂O₃ gave the crude product which was purified by CC (100 g of Al₂O₃, CHCl₃): 1.45 g (74%) of **12d**. White solid. M.p. 74-75° (CHCl₃/hexane). TLC (Al₂O₃, CHCl₃): R_f 0.10. IR (KBr): 3531*m* (OH); 3411*w* (OH); 2976*m* (sat. CH); 2933*w* (sat. CH); 1722*s* (C=O); 1597, 1564*s* (C=C, arene); 1389, 1367*s* (*t*-Bu ester); 1161*s* (C–O); 1072*m*, 876*m*, 847*s*. ¹H-NMR (200 MHz, CDCl₃): 1.42 (*s*, 2 *t*-Bu); 2.58 (*s*, CH₃-C(6')); 2.57-2.64 (*m*, 2 H--C(β), 2 H--C(β ')); 2.91-3.03 (*m*, 2 H--C(α), 2 H--C(α ')); 4.11 (*t*, J(OH,CH₂-C(6)) = 3.5, OH); 4.77 (*d*, J(CH₂-C(6),OH) = 3.5, CH₂-C(6')); 7.02, 7.07 (2*s*, H--C(5')); 8.04, 8.18 (2*s*, H--C(3')). ¹³C-NMR (50.3 MHz, CDCl₃): 24.45 (CH₃-C(β ')); 23.50, 30.47 (C(β), C(β ')); 35.68, 35.76 (C(α), C(α ')); 63.92 (CH₂OH); 80.67, 80.73 ((CH₃)₃C); 118.15, 119.83, 120.09, 123.46 (C(3), C(3'), C(5), C(5')); 150.73, 151.46, 155.08, 157.92, 158.28 (C2), C(2'), C(4), C(4'), C(6')); 171.57 (C=O). Anal. calc. for C₂₆H₃₆N₂O₅ (456.57): C 68.39, H 7.95, N 6.14; found: C 68.25, H 7.85, N 6.07.

Di(tert-*butyl)* 6,6-*Bis(acetoxymethyl)-2,2'-bipyridine-4,4'-dipropionate* (11d). A mixture of 9d (915 mg, 1.94 mmol) in Ac₂O (15 ml) was heated to 130° for 15 min. After evaporation, the crude product was filtered over 50 g of Al₂O₃ with CH₂Cl₂. Crystallisation from hexane/Et₂O gave 816 mg (76%) of 11d. White solid. M.p. 86° (Et₂O/hexane). TLC (Al₂O₃, CHCl₃): R_f 0.40. IR (KBr): 3080w (C=CH); 2975m (sat. CH); 2939w (sat. CH); 1740s (C=O, acetate); 1722s (C=O, t-Bu ester); 1596, 1561s (C=C, arene); 1371s (t-Bu ester); 1234s, 1146s (C-O); 1040m, 876m, 854s. ¹H-NMR (200 MHz, CDCl₃): 1.43 (s, 2 t-Bu); 2.19 (s, 2 CH₃COO); 2.62 (t, J(H-C(β),H-C(α)) = 7.6, 4 H, 2 H-C(β , β')); (t, J(H-C(α),H-C(β)) = 7.6, 4 H, 2 H-C(β , β')); (t, J(H-C(α),H-C(β)); 7.21 (d, J(H-C(5),H-C(3)) = 1.0, 2 H, H-C(5.5')); 8.21 (d, J(H-C(3),H-C(5)) = 1.0, 2 H, H-C(3.3')). ¹³C-NMR (50.3 MHz, CDCl₃): 21.03 (CH₃COO); 28.60 ((CH₃)₃C); 30.59 (C(β , β')); 35.76 (C(α , α')); 67.01 (CH₂-C(6.6')); 80.81 ((CH₃)₃C); 120.32, 121.70 (C(3.3'), C(5.5')); 151.52, 155.29, 155.54 (C(2.2', C(4.4'), C(6.6')); 170.68 (C=O, acetate); 171.69 (C=O, t-Bu ester). Anal. calc. for C₃₀H₄₀N₂O₈ (556.05): C 64.73, H 7.24, N 5.03; found: C 65.00, H 7.47, N 4.78.

Di(tert-*butyl)* 6,6'-*Bis(hydroxymethyl)*-2,2'-*bipyridine-4,4'-dipropionate* (**13d**). To a soln. of **11d** (2.59 g, 4.66 mmol) in EtOH (40 ml), K₂CO₃ (2.00 g, 14.47 mmol) was added and the mixture stirred for 12 h at r.t. Evaporation and CC (300 g of Al₂O₃, CHCl₃/MeOH 95:5) gave 1.72 g (78%) of **13d**. White solid. M.p. 81° (Et₂O/hexane). TLC (Al₂O₃, CHCl₃/MeOH 98:2): *R*_f0.15. IR (KBr): 3509m (OH); 3427m (OH); 3096w (C=C); 2980s (sat. CH); 2928m (sat. CH); 1726s (C=O); 1596, 1564s (C=C, arene); 1367s (*t*-Bu ester); 1275s, 1149s (C–O); 1040m, 883w, 850m. ¹H-NMR (200 MHz, CDCl₃): 1.40 (*s*, 2 *t*-Bu); 2.61 (*t*, $J(H-C(\beta),H-C(\alpha)) = 7.3$, 4 H, 2 $H-C(\beta,\beta')$); 2.98 (*t*, $J(H-C(\alpha),H-C(\beta)) = 7.3$, 4 H, 2 $H-C(\beta,\beta')$); 3.05 (CH₂-C(6,6')); 7.10 (*s*, 2 H, H-C(5,5')); 8.15 (*s*, 2 H, H-C(3,3')). ¹³C-NMR (50.3 MHz, CDCl₃): 28.00 ((CH₃)₃C); 30.47 (C(β,β')); 35.62 (C(α,α')); 63.95 (CH₂-C(6,6')); 80.84 ((CH₃)₃C); 110.79, 120.49 (C(3,3'), C(5,5')); 151.63, 154,28, 158.51 (C(2,2'), C(4,4'), C(6,6')); 171.51 (C=O). Anal. calc. for C₂₆H₃₆N₂O₆ (472.57): C 66.08, H 7.68, N 5.93; found: C 66.23, H 7.50, N 5.94.

Di(tert-butyl) 6,6'-Bis(bromomethyl)-2,2'-bipyridine-4,4'-dipropionate (15d). A stirred suspension of 13d (3.71 g, 7.85 mmol) in CH₂Cl₂ (150 ml) at 0° was treated successively with MsCl (2.50 ml, 31.4 mmol) and Et₃N (6.60 ml, 47.1 mmol). The resulting yellow soln. was allowed to warm to r.t., stirred for 15 min, then washed with sat. aq. NH₄Cl soln. (2 × 150 ml), dried (MgSO₄), and evaporated. To the crude dimesylate (brown oily residue) in THF (150 ml), anh. LiBr (5.00 g, 57.6 mmol) was added under stirring and the mixture heated to 50° for 30 min. After evaporation, the crude product was partitioned between Et₂O/aq. NH₄Cl soln. 2:1 (300 ml). The aq. layer was separated and extracted with Et₂O (100 ml), the combined org. layer dried (MgSO₄) and evaporated, and the residue purified by CC (Al₂O₃, hexane/AcOEt 4:1): 3.10 g (66%) of 15d. White needles. M.p. 116° (Et₂O/hexane). TLC (Al₂O₃, hexane/AcOEt 4:1): R₁O60. IR (KBr): 3074w (C=C); 2976s (sat. CH); 1722s (C=O); 1593, 1554s (C=C, arene); 1417m, 1392m, 1367s (t-Bu ester); 1244s, 1146s (C-O); 854m, 590m (C-Br). ¹H-NMR (200 MHz, CDCl₃): 1.44 (s, 2 t-Bu); 2.65 (t, J(H-C(β), H-C(α)) = 7.6, 4 H, 2 H-C(β , β')); 3.02 (t, J(H-C(α), H-C(β)) = 7.6, 4 H, 2 H-C(β , β')); 3.02 (t, J, H-C(α , 3')). Anal. calc. for C₂₆H₃H₈F₂N₂O₄ (598.38): C 52.18, H 5.73, Br 26.71, N 4.68; found: C 52.68, H 5.73, Br 26.25, N 4.87.

Tetra(tett-butyl) 6,6"-[(2,2'-Bipyridine-6,6'-diyl)bis(methyleneoxymethylene)]-6,6'-dimethylbis[2,2'-bipyridine]-4,4'4", 4"'-tetrapropionate (3d). To a stirred soln. of 12d (1.05 g, 2.30 mmol) in t-BuOH (100 ml) KO(t-Bu) (300 mg, 2.68 mmol) was added. The resulting yellow soln. was stirred at r.t. for 15 min. Then, 15a (376 mg, 1.10 mmol) in CH₂Cl₂ (100 ml) was added. After 12 h, H₂O (3 ml) was added, the soln. evaporated, and the remaining oil filtered over 30 g of Al_2O_3 with CHCl₃. CC (100 g of Al_2O_3 , hexane/AcOEt 4:1) of the crude product afforded 735 mg (61%) of 3d. White solid. M.p. 48° (Et₂O/hexane). TLC (Al₂O₃, hexane/AcOEt 4:1): R_f 0.10. UV (CHCl₃): 295 (47700). FT-IR (KBr): 3060w (C=CH); 2975, 2931m (sat. CH); 1725s (C=O); 1598s, 1554m (C=C); 1365m (t-Bu ester); 1159s (C-O); 870m, 855m, 798m. H-NMR (200 MHz, CDCl₃): 1.41 (s, 2 t-Bu); 1.42 (s, 2 t-Bu); 2.59 (s, 6 H, $CH_3-C(6',6''')$); 2.55–2.68 (m, 8 H, 2 H– $C(\beta,\beta'')$, 2 H– $C(\beta',\beta''')$); 2.90–3.06 (m, 8 H, 2 H– $C(\alpha,\alpha'')$, $2 H-C(\alpha', \alpha'')$; 4.87 (s, 4 H, OCH₂-C(6^{IV}, 6^V)); 4.90 (s, 4 H, OCH₂-C(6,6'')); 7.01 (s, 2 H, H-C(5', 5''')); 7.26 (s, 2 H, C(5', 5'')); 7.26 (s, 2 H, C(5'')); 7.26 (s, 2 H, H, H–C(5,5"); 7.58 (d, J = 7.6, 2 H, H–C(5^{1V}, 5^V)); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3"')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3"')); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (s, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(4^{1V}, 4^V)); 8.04 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H–C(3', 3'')); 7.85 (t, J = 7.6, 2 H, H) 8.17 (s, 2 H–C(3,3")); 8.33 (d, J = 7.6, 2 H, H–C(3^{IV},3^V)). ¹³C-NMR (50.3 MHz, CDCl₃): 24.47 (CH₃–C(6',6")); $28.05 ((CH_3)_3C); \ 30.47, \ 30.68, \ (C(\beta,\beta''), \ C(\beta',\beta''')); \ 35.84 \ (C(\alpha,\alpha''), \ C(\alpha',\alpha''')); \ 73.90, \ 73.99 \ (CH_2OCH_2); \ 80.69$ ((CH₃)₃C); 118.39, 119.87, 121.08, 121.31, 123.36, 137.50, 151.31, 155.49, 157.83, 157.89 (bpy); 171.72 (C=O). FAB-MS (pos. mode): 1093.6 (calc. 1093.3). Anal. calc. for $C_{64}H_{80}N_6O_{10}$ (1093.33): C 70.30, H 7.38, N 7.69; found: C 70.40, H 7.66, N 7.53.

Tetra(tert-butyl) 6,6"- {{4,4'-Bis{2-[(tert-butyl)carbonyl]ethyl}-2,2'-bipyridine-6,6'-diyl}bis(methyleneoxymethylene)}-6',6"''-dimethylbis[2,2'-bipyridine]-4,4',4",4"''-tetrapropionate (**3e**). To a stirred soln. of **12d** (740 mg, 1.62 mmol) in *t*-BuOH (50 ml), KO(*t*-Bu) (181 mg, 1.62 mmol) was added. The resulting yellow soln. was stirred at r.t. for 10 min. Then, **15d** (115 mg, 0.192 mmol) in CH₂Cl₂ (40 ml) was added. After 3 h at r.t. (TLC (Al₂O₃, CHCl₃): no **15d** left), H₂O (1 ml), was added and the soln. evaporated. The remaining oil was filtered over 30 g of Al₂O₃ with CHCl₃. CC (80 g of Al₂O₃, hexane/AcOEt 4:1) of the crude product afforded 130 mg (50%) of **3e**. White solid. M.p. 76° (Et₂O/hexane). TLC (Al₂O₃, hexane/AcOEt 4:1): *R*_f 0.15. FT-IR (KBr): 3060w (C=CH); 2975, 2931*m* (sat. CH); 1725*s* (C=O); 1598*s*, 1554*m* (C=C); 1365*m* (*t*-Bu ester); 1159*s* (C-O); 870*m*, 855*m*, 798*m*. ¹H-NMR (200 MHz, CDCl₃): 1.41 (*s*, 3 *t*-Bu); 1.42 (*s*, 3 *t*-Bu); 2.55 (*s*, 6 H, CH₃-C(6',6''')); 2.55-2.68 (*m*, 12 H, 2 H-C(β,β''), 2 H-C(β',β'''), 2 H-C(β^{1V},β^V)); 2.90-3.07 (*m*, 12 H, 2 H-C(α,α''), 2 H-C(α',α'''), 2 H-C(α',α''')); 8.17 (*s*, H-C(3,3''), H-C(3^{1V},3^V)). ¹³C-NMR (50.3 MHz, CDCl₃): 24.50 (CH₃-C(6',6''')); 28.05 ((CH₃)₃C); 30.47, 30.67, (C(β,β''), C(β,β''')), C(β^{1V},β^V)); 35.82 (C(α,α''), C(α',α'''), C(α^{1V},α^V)); 74.00 (CH₂OCH₂); 80.67 ((CH₃)₃C); 119.91, 121.17, 151.36, 155.54, 157.91 (bpy); 171.66, 171.72 (C=O). Anal. calc. for C₇₈H₁₀₄N₆O₁₄ (1349.66): C 79.41, H 7.77, N 6.23; found: C 69.59, H 7.83, N 6.23.

Di(tert-butyl) 6"-(Bromomethyl)-6'-methyl-6,6"-[oxybis(methylene)]bis[2,2'-bipyridine]-4,4'-dipropionate (16d). To a stirred soln. of 12d (1.54 mg, 3.37 mmol) in t-BuOH (150 ml), KO(t-Bu) 447 mg, 4.00 mmol) was added

and the yellow soln. stirred at r.t. for 15 min. Then, **15a** (1.20 g, 3.50 mmol) in CH₂Cl₂ (300 ml) was added. After 3 h, H₂O (5 ml) was added, the soln. evaporated, and the remaining oil filtered over 40 g of Al₂O₃ with CHCl₃. CC (100 g of Al₂O₃, hexane/AcOEt 4:1) of the crude product afforded 1.64 g (68%) of **16d**. White solid. M.p. 88° (Et₂O/hexane). TLC (Al₂O₃, hexane/AcOEt 4:1): R_{f} 0.60. IR (KBr): 2980, 2925w (sat. CH); 1723s (C=O); 1596, 1564m (C=C); 1441m, 1364m (*t*-Bu ester); 1160s (C-O); 875m, 850w, 790m. ¹H-NMR (200 MHz, CDCl₃): 1.41, 1.43 (2s, 2*t*-Bu); 2.60 (*s*, CH₃-C(6')); 2.56–2.68 (*m*, 2 H–C(β), 2 H–C(β ')); 2.90–3.06 (*m*, 2 H–C(α), 2 H–C(α ')); 4.63 (*s*, CH₂Br); 4.87 (*s*, OCH₂-C(6'')); 7.90 (*s*, OCH₂-C(6)); 7.01 (*s*, H–C(5'')); 7.80, 7.87 (2*t*, J = 7.8, H–C(4'')); 8.04 (*s*, H–C(5'')); 7.59 (*d*, J(H–C(5''), H–C(4'')) = 7.8, H–C(5'')); 7.80, 7.87 (2*t*, J = 7.8, H–C(4'')); 8.04 (*s*, H–C(5'')); 8.17 (*s*, H–C(5'')); 8.35 (8.37 (2*d*, J = 7.8, H–C(3'')); ¹³C-NMR (50.3 MHz, CDCl₃); 24.37 (CH₃-C(6')); 28.06 ((CH₃)₃C); 30.48, 30.68, (C(β), C(β ')); 34.21 (CH₂Br); 35.82 (C(α), C(α ')); 73.89, 74.01 (CH₂OCH₂); 80.73 ((CH₃)₃C); 118.50, 120.03, 120.34, 121.21, 121.60, 123.35, 137.59, 137.86 (CH, arene); 155.05, 155.05, 155.92, 156.16, 157.85, 157.91 (C, arene); 171.74 (C=O). Anal. calc. for C₃₈H₄₅BrN₄O₅ (717.67): C 63.59, H 6.32, Br 11.14, N 7.81; found: C 63.72, H 6.31, Br 11.38, N 7.82.

 $Tetra(tert-butyl) = 6.6'' - \{\{4,4'-Bis\{2-[(tert-butoxy)carbonyl]ethyl\}-2,2'-bipyridine-6.6'-diyl\}bis(methylene-6.6'-diylbis(methylene-6$ oxymethlene)bis(2,2'-bipyridine-6',6-diyl)bis(methyleneoxymethlene)}-6',6'''-dimethylbis[2,2'-bipyridine]-4,4',4'',4'''tetraproprionate (5d). A stirred soln. of 16d (120 mg, 0.164 mmol) and 13d (32 mg, 0.0669 mmol) in 60 ml of CH₂Cl₂/t-BuOH 1:1 was treated with KO(t-Bu) (19 mg, 0.167 mmol). After 24 h at r.t. (TLC: no starting material left), H₂O (1 ml) was added, the mixture evaporated, and the brown oil filtered over 10 g of Al₂O₃ with CHCl₃. Further purification by CC (100 g of Al_2O_3 , hexane/AcOEt 4:1 \rightarrow 2:1) gave 55 mg (47%) of 5d. White solid. M.p. 108° (Et₂O/hexane). TLC (Al₂O₃, hexane/AcOEt 2:1): R_f 0.35. UV (CHCl₃): 290 (64200). FT-IR (KBr): 2975, 2928m (sat. CH); 1726s (C=O); 1596s, 1564m (C=C); 1438m, 1367m (t-Bu ester); 1146s (C-O); 848m, 788m. ¹H-NMR (200 MHz, CDC₁): 1.41 (s, 3 t-Bu); 1.43 (s, 3 t-Bu); 2.59 (s, 6 H, CH₃-C(6', 6''')); 2.56-2.67 (m, 12 H, 2 H-C(β,β''), 2 H-C(β',β'''), 2 H-C($\beta'^{(11)},\beta^{(12)}$); 2.90-3.06 (m, 12 H, 2 H-C(α,α''), 2 H-C(α',α'''), $2 H - C(\alpha^{VIII}, \alpha^{IX})); 4.88 (s, 8 H, CH_2 - C(6, 6''), CH_2 - C(6^{VIII}, 6^{IX})); 4.90 (s, 8 H, CH_2 - C(6^{IV}, 6^{VI}), CH_2 - C(6^{V}, 6^{VII})); 4.90 (s, 8 H, CH_2 - C(6^{IV}, 6^{IX})); 4.$ 7.01 (s, 2 H, H–C(5',5''); 7.43 (s, 4 H, H–C(5,5''), H–C(5^{VIII},5^{IX})); 7.68 (d, J = 7.7, 4 H, H–C(5^{IV},5^{VII}), $H-C(5^{v},5^{v(1)});$ 7.85 (t, J = 7.7, 4 H, $H-C(4^{1v},4^{v_1}), H-C(4^{v},4^{v_{11}});$ 8.05 (s, 2 H, $H-C(3^{\prime},3^{\prime\prime\prime}));$ 8.18 (s, 4 H, $H-C(3^{3/2}), H-C(3^{VII}, 3^{IX})); 8.34 (d, J = 7.7, 4 H, H-C(3^{IV}, 3^{VI}), H-C(3^{V}, 3^{VII})).$ ¹³C-NMR (50.3 MHz, CDCl₃): С(а^{VIII}, а^{IX})); 73.89, 74.01 (*C*H₂O*C*H₂); 80.70, 80.84 ((CH₃)₃*C*); 118.39, 119.90, 120.48, 121.33, 123.45, 137.53, 151,36, 155.12, 155.52, 155.94, 156.23, 157.85, 157.94 (C of bpy); 171.56, 171.74 (C=O). FAB-MS (pos. mode): 1746.3 (calc. 1746.1). Anal. calc. for C₁₀₂H₁₂₄N₁₀O₁₆ (1746.09): C 70.16, H 7.16, N 8.02; found: C 70.20, H 7.14, N 7.93.

REFERENCES

- [1] J.-M. Lehn, Angew. Chem. 1990, 102, 1347; ibid. Int. Ed. 1990, 29, 1304; ibid. 1988, 27, 289.
- [2] J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2565.
- [3] J.-M. Lehn, A. Rigault, Angew. Chem. 1988, 100, 1121.
- [4] T. M. Garrett, U. Koert, J.-M. Lehn, A. Rigault, D. Meyer, J. Fischer, J. Chem. Soc., Chem. Commun. 1990, 557.
- [5] U. Koert, M. M. Harding, J.-M. Lehn, Nature (London) 1990, 346, 339.
- [6] Y. He, J.-M. Lehn, Chem. J. Chinese Univ. 1990, 6, 183, and unpublished work.
- [7] J.-M. Lehn, R. Ziessel, Helv. Chim. Acta 1988, 71, 1511.
- [8] J.-C. Rodriguez-Ubis, B. Alpha, D. Plancherel, J.-M. Lehn, Helv. Chim. Acta 1984, 67, 2264.
- [9] E. Wenkert, J. Am. Chem. Soc. 1965, 87, 5461.
- [10] A. J. Mancuso, S. L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480.
- [11] G. R. Newkome, W. E. Puckett, G. E. Kiefer, V. K. Gupta, Y. Xia, M. Coreil, M. A. Hackney, J. Org. Chem. **1982**, 47, 4116.
- [12] V. Boekelheide, W. J. Lehn, J. Am. Chem. Soc. 1954, 76, 1286.
- [13] T. Kaufmann, J. König, A. Waltermann, Chem. Ber. 1976, 109, 3864.
- [14] G. R. Newkome, V. G. Gupta, F. R. Frouzek, Inorg. Chem. 1983, 22, 171.